The first elliptic curve in nature. This is a model for the modular curve \(X_1(11)\).
Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3-x^2\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3-x^2z\)
|
(dehomogenize, simplify) |
\(y^2=x^3-432x+8208\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{5}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(0, 0)$ | $0$ | $5$ |
Integral points
\( \left(0, 0\right) \), \( \left(0, -1\right) \), \( \left(1, 0\right) \), \( \left(1, -1\right) \)
Invariants
Conductor: | $N$ | = | \( 11 \) | = | $11$ |
|
Discriminant: | $\Delta$ | = | $-11$ | = | $-1 \cdot 11 $ |
|
j-invariant: | $j$ | = | \( -\frac{4096}{11} \) | = | $-1 \cdot 2^{12} \cdot 11^{-1}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-1.1127287973354532519893939281$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.1127287973354532519893939281$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8254556483942886$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.190241815676422$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $6.3460465213977671084439730838$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $5$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.25384186085591068433775892335 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.253841861 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 6.346047 \cdot 1.000000 \cdot 1}{5^2} \\ & \approx 0.253841861\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 5 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 5 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There is only one prime $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B.1.1 | 25.120.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 550 = 2 \cdot 5^{2} \cdot 11 \), index $1200$, genus $37$, and generators
$\left(\begin{array}{rr} 316 & 545 \\ 377 & 287 \end{array}\right),\left(\begin{array}{rr} 38 & 41 \\ 191 & 539 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 50 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 50 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 501 & 50 \\ 500 & 51 \end{array}\right),\left(\begin{array}{rr} 516 & 5 \\ 35 & 186 \end{array}\right)$.
The torsion field $K:=\Q(E[550])$ is a degree-$19800000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/550\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$11$ | split multiplicative | $12$ | \( 1 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5 and 25.
Its isogeny class 11.a
consists of 3 curves linked by isogenies of
degrees dividing 25.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{5}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.44.1 | \(\Z/10\Z\) | not in database |
$5$ | \(\Q(\zeta_{11})^+\) | \(\Z/25\Z\) | 5.5.14641.1-11.1-a3 |
$6$ | 6.0.21296.1 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
$8$ | 8.2.32019867.1 | \(\Z/15\Z\) | not in database |
$12$ | 12.2.20433779818496.3 | \(\Z/20\Z\) | not in database |
$15$ | 15.5.35351257235385344.1 | \(\Z/50\Z\) | not in database |
$20$ | 20.0.1402274470934209014892578125.2 | \(\Z/5\Z \oplus \Z/5\Z\) | not in database |
$20$ | 20.0.95777233176300048828125.1 | \(\Z/25\Z\) | not in database |
We only show fields where the torsion growth is primitive.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 11 |
---|---|---|---|---|
Reduction type | ss | ord | ord | split |
$\lambda$-invariant(s) | 0,1 | 0 | 0 | 1 |
$\mu$-invariant(s) | 0,0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.