Properties

Label 121.c2
Conductor 121121
Discriminant 14641-14641
j-invariant 121 -121
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x22x7y^2+xy=x^3+x^2-2x-7 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z2xz27z3y^2z+xyz=x^3+x^2z-2xz^2-7z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x33267x280962y^2=x^3-3267x-280962 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([1, 1, 0, -2, -7])
 
Copy content gp:E = ellinit([1, 1, 0, -2, -7])
 
Copy content magma:E := EllipticCurve([1, 1, 0, -2, -7]);
 
Copy content oscar:E = elliptic_curve([1, 1, 0, -2, -7])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  121 121  = 11211^{2}
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  14641-14641 = 1114-1 \cdot 11^{4}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  121 -121  = 1112-1 \cdot 11^{2}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.51796083811567908938493945785-0.51796083811567908938493945785
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.3172592623818026040722539838-1.3172592623818026040722539838
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.94611213083372430.9461121308337243
Szpiro ratio: σm\sigma_{m} ≈ 3.56854227887283853.5685422788728385

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 1.66615692039421608993769029861.6661569203942160899376902986
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.66615692039421608993769029861.6661569203942160899376902986
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

1.666156920L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.6661571.0000001121.666156920\begin{aligned} 1.666156920 \approx L(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.666157 \cdot 1.000000 \cdot 1}{1^2} \\ & \approx 1.666156920\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([1, 1, 0, -2, -7]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([1, 1, 0, -2, -7]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   121.2.a.c

q+q2+2q3q4+q5+2q62q73q8+q9+q102q12+q132q14+2q15q165q17+q18+6q19+O(q20) q + q^{2} + 2 q^{3} - q^{4} + q^{5} + 2 q^{6} - 2 q^{7} - 3 q^{8} + q^{9} + q^{10} - 2 q^{12} + q^{13} - 2 q^{14} + 2 q^{15} - q^{16} - 5 q^{17} + q^{18} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 6
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There is only one prime pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
1111 11 IVIV additive -1 2 4 0

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2G 8.4.0.2
1111 11B.1.7 11.120.1.9

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[1, 0, 44, 1], [1, 44, 0, 1], [1, 84, 0, 1], [45, 44, 44, 45], [45, 22, 22, 1], [12, 55, 77, 23], [45, 44, 66, 1], [45, 33, 0, 67], [73, 0, 0, 49]] GL(2,Integers(88)).subgroup(gens)
 
Copy content magma:Gens := [[1, 0, 44, 1], [1, 44, 0, 1], [1, 84, 0, 1], [45, 44, 44, 45], [45, 22, 22, 1], [12, 55, 77, 23], [45, 44, 66, 1], [45, 33, 0, 67], [73, 0, 0, 49]]; sub<GL(2,Integers(88))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 88=2311 88 = 2^{3} \cdot 11 , index 480480, genus 1616, and generators

(10441),(14401),(18401),(45444445),(4522221),(12557723),(4544661),(4533067),(730049)\left(\begin{array}{rr} 1 & 0 \\ 44 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 44 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 84 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 45 & 44 \\ 44 & 45 \end{array}\right),\left(\begin{array}{rr} 45 & 22 \\ 22 & 1 \end{array}\right),\left(\begin{array}{rr} 12 & 55 \\ 77 & 23 \end{array}\right),\left(\begin{array}{rr} 45 & 44 \\ 66 & 1 \end{array}\right),\left(\begin{array}{rr} 45 & 33 \\ 0 & 67 \end{array}\right),\left(\begin{array}{rr} 73 & 0 \\ 0 & 49 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[88])K:=\Q(E[88]) is a degree-4224042240 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/88Z)\GL_2(\Z/88\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
1111 additive 5252 1 1

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 11.
Its isogeny class 121.c consists of 2 curves linked by isogenies of degree 11.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.484.1 Z/2Z\Z/2\Z not in database
66 6.0.937024.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.32019867.1 Z/3Z\Z/3\Z not in database
1010 Q(ζ11)\Q(\zeta_{11}) Z/11Z\Z/11\Z not in database
1212 12.2.56192894500864.1 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ord ord ord ord add ord ord ord ord ord ord ord ord ss ord
λ\lambda-invariant(s) ? 0 2 0 - 2 0 0 0 0 0 0 0 0,0 0
μ\mu-invariant(s) ? 0 0 0 - 0 0 0 0 0 0 0 0 0,0 0

An entry ? indicates that the invariants have not yet been computed.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.