This isogeny class and its quadratic twist by Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 ) are the ones of minimal conductor with a 13 13 1 3 -isogeny.
sage: E = EllipticCurve([0, -1, 1, -2, -1])
gp: E = ellinit([0, -1, 1, -2, -1])
magma: E := EllipticCurve([0, -1, 1, -2, -1]);
oscar: E = elliptic_curve([0, -1, 1, -2, -1])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
trivial
magma: MordellWeilGroup(E);
Invariants
Conductor :
N N N
=
147 147 1 4 7 = 3 ⋅ 7 2 3 \cdot 7^{2} 3 ⋅ 7 2
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
− 147 -147 − 1 4 7 = − 1 ⋅ 3 ⋅ 7 2 -1 \cdot 3 \cdot 7^{2} − 1 ⋅ 3 ⋅ 7 2
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
− 28672 3 -\frac{28672}{3} − 3 2 8 6 7 2 = − 1 ⋅ 2 12 ⋅ 3 − 1 ⋅ 7 -1 \cdot 2^{12} \cdot 3^{-1} \cdot 7 − 1 ⋅ 2 1 2 ⋅ 3 − 1 ⋅ 7
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ − 0.84508751641905230202498515193 -0.84508751641905230202498515193 − 0 . 8 4 5 0 8 7 5 1 6 4 1 9 0 5 2 3 0 2 0 2 4 9 8 5 1 5 1 9 3
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 1.1694058745949378528758772758 -1.1694058745949378528758772758 − 1 . 1 6 9 4 0 5 8 7 4 5 9 4 9 3 7 8 5 2 8 7 5 8 7 7 2 7 5 8
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.9123874511245065 0.9123874511245065 0 . 9 1 2 3 8 7 4 5 1 1 2 4 5 0 6 5
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 2.8698297320499577 2.8698297320499577 2 . 8 6 9 8 2 9 7 3 2 0 4 9 9 5 7 7
Analytic rank :
r a n r_{\mathrm{an}} r a n = 0 0 0
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 0 0 0
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) = 1 1 1
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 1.9200537453490419433285021703 1.9200537453490419433285021703 1 . 9 2 0 0 5 3 7 4 5 3 4 9 0 4 1 9 4 3 3 2 8 5 0 2 1 7 0 3
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 1 1 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ( E , 1 ) L(E,1) L ( E , 1 ) ≈ 1.9200537453490419433285021703 1.9200537453490419433285021703 1 . 9 2 0 0 5 3 7 4 5 3 4 9 0 4 1 9 4 3 3 2 8 5 0 2 1 7 0 3
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
=
1 1 1
(exact )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
1.920053745 ≈ L ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 1.920054 ⋅ 1.000000 ⋅ 1 1 2 ≈ 1.920053745 \begin{aligned} 1.920053745 \approx L(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.920054 \cdot 1.000000 \cdot 1}{1^2} \\ & \approx 1.920053745\end{aligned} 1 . 9 2 0 0 5 3 7 4 5 ≈ L ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 1 . 9 2 0 0 5 4 ⋅ 1 . 0 0 0 0 0 0 ⋅ 1 ≈ 1 . 9 2 0 0 5 3 7 4 5
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, -1, 1, -2, -1]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, -1, 1, -2, -1]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
147.2.a.b
q + 2 q 2 − q 3 + 2 q 4 + 2 q 5 − 2 q 6 + q 9 + 4 q 10 − 2 q 11 − 2 q 12 − q 13 − 2 q 15 − 4 q 16 + 2 q 18 − q 19 + O ( q 20 ) q + 2 q^{2} - q^{3} + 2 q^{4} + 2 q^{5} - 2 q^{6} + q^{9} + 4 q^{10} - 2 q^{11} - 2 q^{12} - q^{13} - 2 q^{15} - 4 q^{16} + 2 q^{18} - q^{19} + O(q^{20}) q + 2 q 2 − q 3 + 2 q 4 + 2 q 5 − 2 q 6 + q 9 + 4 q 1 0 − 2 q 1 1 − 2 q 1 2 − q 1 3 − 2 q 1 5 − 4 q 1 6 + 2 q 1 8 − q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 2 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[335, 26, 78, 251], [14, 23, 325, 339], [1, 26, 0, 379], [1, 0, 26, 1], [1, 26, 0, 1], [365, 26, 377, 339], [521, 26, 520, 27]]
GL(2,Integers(546)).subgroup(gens)
magma: Gens := [[335, 26, 78, 251], [14, 23, 325, 339], [1, 26, 0, 379], [1, 0, 26, 1], [1, 26, 0, 1], [365, 26, 377, 339], [521, 26, 520, 27]];
sub<GL(2,Integers(546))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 546 = 2 ⋅ 3 ⋅ 7 ⋅ 13 546 = 2 \cdot 3 \cdot 7 \cdot 13 5 4 6 = 2 ⋅ 3 ⋅ 7 ⋅ 1 3 , index 336 336 3 3 6 , genus 9 9 9 , and generators
( 335 26 78 251 ) , ( 14 23 325 339 ) , ( 1 26 0 379 ) , ( 1 0 26 1 ) , ( 1 26 0 1 ) , ( 365 26 377 339 ) , ( 521 26 520 27 ) \left(\begin{array}{rr}
335 & 26 \\
78 & 251
\end{array}\right),\left(\begin{array}{rr}
14 & 23 \\
325 & 339
\end{array}\right),\left(\begin{array}{rr}
1 & 26 \\
0 & 379
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
26 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 26 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
365 & 26 \\
377 & 339
\end{array}\right),\left(\begin{array}{rr}
521 & 26 \\
520 & 27
\end{array}\right) ( 3 3 5 7 8 2 6 2 5 1 ) , ( 1 4 3 2 5 2 3 3 3 9 ) , ( 1 0 2 6 3 7 9 ) , ( 1 2 6 0 1 ) , ( 1 0 2 6 1 ) , ( 3 6 5 3 7 7 2 6 3 3 9 ) , ( 5 2 1 5 2 0 2 6 2 7 ) .
The torsion field K : = Q ( E [ 546 ] ) K:=\Q(E[546]) K : = Q ( E [ 5 4 6 ] ) is a degree-45287424 45287424 4 5 2 8 7 4 2 4 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 546 Z ) \GL_2(\Z/546\Z) GL 2 ( Z / 5 4 6 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
13.
Its isogeny class 147.b
consists of 2 curves linked by isogenies of
degree 13.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
All p p p -adic regulators are identically 1 1 1 since the rank is 0 0 0 .