This isogeny class and its quadratic twist by Q ( − 3 ) \Q(\sqrt{-3}) Q ( − 3 ) are the ones of minimal conductor with a 13 13 1 3 -isogeny.
y 2 + y = x 3 + x 2 − 44704 x − 3655907 y^2+y=x^3+x^2-44704x-3655907 y 2 + y = x 3 + x 2 − 4 4 7 0 4 x − 3 6 5 5 9 0 7
(homogenize , simplify )
y 2 z + y z 2 = x 3 + x 2 z − 44704 x z 2 − 3655907 z 3 y^2z+yz^2=x^3+x^2z-44704xz^2-3655907z^3 y 2 z + y z 2 = x 3 + x 2 z − 4 4 7 0 4 x z 2 − 3 6 5 5 9 0 7 z 3
(dehomogenize , simplify )
y 2 = x 3 − 57936816 x − 169874745264 y^2=x^3-57936816x-169874745264 y 2 = x 3 − 5 7 9 3 6 8 1 6 x − 1 6 9 8 7 4 7 4 5 2 6 4
(homogenize , minimize )
sage: E = EllipticCurve([0, 1, 1, -44704, -3655907])
gp: E = ellinit([0, 1, 1, -44704, -3655907])
magma: E := EllipticCurve([0, 1, 1, -44704, -3655907]);
oscar: E = elliptic_curve([0, 1, 1, -44704, -3655907])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
trivial
magma: MordellWeilGroup(E);
Invariants
Conductor :
N N N
=
147 147 1 4 7 = 3 ⋅ 7 2 3 \cdot 7^{2} 3 ⋅ 7 2
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
− 9190954824723 -9190954824723 − 9 1 9 0 9 5 4 8 2 4 7 2 3 = − 1 ⋅ 3 13 ⋅ 7 8 -1 \cdot 3^{13} \cdot 7^{8} − 1 ⋅ 3 1 3 ⋅ 7 8
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
− 1713910976512 1594323 -\frac{1713910976512}{1594323} − 1 5 9 4 3 2 3 1 7 1 3 9 1 0 9 7 6 5 1 2 = − 1 ⋅ 2 12 ⋅ 3 − 13 ⋅ 7 ⋅ 1 7 3 ⋅ 2 3 3 -1 \cdot 2^{12} \cdot 3^{-13} \cdot 7 \cdot 17^{3} \cdot 23^{3} − 1 ⋅ 2 1 2 ⋅ 3 − 1 3 ⋅ 7 ⋅ 1 7 3 ⋅ 2 3 3
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 1.4103422368393727185544349406 1.4103422368393727185544349406 1 . 4 1 0 3 4 2 2 3 6 8 3 9 3 7 2 7 1 8 5 5 4 4 3 4 9 4 0 6
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.11306880413583051515086644497 0.11306880413583051515086644497 0 . 1 1 3 0 6 8 8 0 4 1 3 5 8 3 0 5 1 5 1 5 0 8 6 6 4 4 4 9 7
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.1059237401535138 1.1059237401535138 1 . 1 0 5 9 2 3 7 4 0 1 5 3 5 1 3 8
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 8.764507999263065 8.764507999263065 8 . 7 6 4 5 0 7 9 9 9 2 6 3 0 6 5
Analytic rank :
r a n r_{\mathrm{an}} r a n = 0 0 0
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 0 0 0
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) = 1 1 1
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 0.16415644111402753884393733089 0.16415644111402753884393733089 0 . 1 6 4 1 5 6 4 4 1 1 1 4 0 2 7 5 3 8 8 4 3 9 3 7 3 3 0 8 9
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 13 13 1 3
= 13 ⋅ 1 13\cdot1 1 3 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ( E , 1 ) L(E,1) L ( E , 1 ) ≈ 2.1340337344823580049711853015 2.1340337344823580049711853015 2 . 1 3 4 0 3 3 7 3 4 4 8 2 3 5 8 0 0 4 9 7 1 1 8 5 3 0 1 5
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
=
1 1 1
(exact )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
2.134033734 ≈ L ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.164156 ⋅ 1.000000 ⋅ 13 1 2 ≈ 2.134033734 \begin{aligned} 2.134033734 \approx L(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.164156 \cdot 1.000000 \cdot 13}{1^2} \\ & \approx 2.134033734\end{aligned} 2 . 1 3 4 0 3 3 7 3 4 ≈ L ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 0 . 1 6 4 1 5 6 ⋅ 1 . 0 0 0 0 0 0 ⋅ 1 3 ≈ 2 . 1 3 4 0 3 3 7 3 4
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, 1, 1, -44704, -3655907]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, 1, 1, -44704, -3655907]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
147.2.a.c
q + 2 q 2 + q 3 + 2 q 4 − 2 q 5 + 2 q 6 + q 9 − 4 q 10 − 2 q 11 + 2 q 12 + q 13 − 2 q 15 − 4 q 16 + 2 q 18 + q 19 + O ( q 20 ) q + 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} + q^{9} - 4 q^{10} - 2 q^{11} + 2 q^{12} + q^{13} - 2 q^{15} - 4 q^{16} + 2 q^{18} + q^{19} + O(q^{20}) q + 2 q 2 + q 3 + 2 q 4 − 2 q 5 + 2 q 6 + q 9 − 4 q 1 0 − 2 q 1 1 + 2 q 1 2 + q 1 3 − 2 q 1 5 − 4 q 1 6 + 2 q 1 8 + q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 2 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[196, 13, 169, 534], [15, 26, 130, 287], [14, 23, 325, 339], [1, 0, 26, 1], [61, 520, 390, 445], [1, 26, 0, 1], [521, 26, 520, 27]]
GL(2,Integers(546)).subgroup(gens)
magma: Gens := [[196, 13, 169, 534], [15, 26, 130, 287], [14, 23, 325, 339], [1, 0, 26, 1], [61, 520, 390, 445], [1, 26, 0, 1], [521, 26, 520, 27]];
sub<GL(2,Integers(546))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 546 = 2 ⋅ 3 ⋅ 7 ⋅ 13 546 = 2 \cdot 3 \cdot 7 \cdot 13 5 4 6 = 2 ⋅ 3 ⋅ 7 ⋅ 1 3 , index 336 336 3 3 6 , genus 9 9 9 , and generators
( 196 13 169 534 ) , ( 15 26 130 287 ) , ( 14 23 325 339 ) , ( 1 0 26 1 ) , ( 61 520 390 445 ) , ( 1 26 0 1 ) , ( 521 26 520 27 ) \left(\begin{array}{rr}
196 & 13 \\
169 & 534
\end{array}\right),\left(\begin{array}{rr}
15 & 26 \\
130 & 287
\end{array}\right),\left(\begin{array}{rr}
14 & 23 \\
325 & 339
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
26 & 1
\end{array}\right),\left(\begin{array}{rr}
61 & 520 \\
390 & 445
\end{array}\right),\left(\begin{array}{rr}
1 & 26 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
521 & 26 \\
520 & 27
\end{array}\right) ( 1 9 6 1 6 9 1 3 5 3 4 ) , ( 1 5 1 3 0 2 6 2 8 7 ) , ( 1 4 3 2 5 2 3 3 3 9 ) , ( 1 2 6 0 1 ) , ( 6 1 3 9 0 5 2 0 4 4 5 ) , ( 1 0 2 6 1 ) , ( 5 2 1 5 2 0 2 6 2 7 ) .
The torsion field K : = Q ( E [ 546 ] ) K:=\Q(E[546]) K : = Q ( E [ 5 4 6 ] ) is a degree-45287424 45287424 4 5 2 8 7 4 2 4 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 546 Z ) \GL_2(\Z/546\Z) GL 2 ( Z / 5 4 6 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
13.
Its isogeny class 147.c
consists of 2 curves linked by isogenies of
degree 13.
The minimal quadratic twist of this elliptic curve is
147.b1 , its twist by − 7 -7 − 7 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
3 3 3
3.1.588.1
Z / 2 Z \Z/2\Z Z / 2 Z
not in database
6 6 6
6.0.1037232.1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
8 8 8
8.2.425329947.2
Z / 3 Z \Z/3\Z Z / 3 Z
not in database
12 12 1 2
deg 12
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
12 12 1 2
12.0.10331448031704891637.2
Z / 13 Z \Z/13\Z Z / 1 3 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
All p p p -adic regulators are identically 1 1 1 since the rank is 0 0 0 .