Properties

Label 147.c2
Conductor 147147
Discriminant 17294403-17294403
j-invariant 286723 -\frac{28672}{3}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

This isogeny class and its quadratic twist by Q(3)\Q(\sqrt{-3}) are the ones of minimal conductor with a 1313-isogeny.

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3+x2114x+473y^2+y=x^3+x^2-114x+473 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3+x2z114xz2+473z3y^2z+yz^2=x^3+x^2z-114xz^2+473z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3148176x+23856336y^2=x^3-148176x+23856336 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 1, -114, 473])
 
gp: E = ellinit([0, 1, 1, -114, 473])
 
magma: E := EllipticCurve([0, 1, 1, -114, 473]);
 
oscar: E = elliptic_curve([0, 1, 1, -114, 473])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  147 147  = 3723 \cdot 7^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  17294403-17294403 = 1378-1 \cdot 3 \cdot 7^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  286723 -\frac{28672}{3}  = 1212317-1 \cdot 2^{12} \cdot 3^{-1} \cdot 7
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.127867558108604350527691219790.12786755810860435052769121979
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.1694058745949378528758772758-1.1694058745949378528758772758
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.91238745112450650.9123874511245065
Szpiro ratio: σm\sigma_{m} ≈ 5.20939863540794255.2093986354079425

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 2.13403373448235800497118530152.1340337344823580049711853015
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.13403373448235800497118530152.1340337344823580049711853015
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.134033734L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor212.1340341.0000001122.134033734\displaystyle 2.134033734 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 2.134034 \cdot 1.000000 \cdot 1}{1^2} \approx 2.134033734

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   147.2.a.c

q+2q2+q3+2q42q5+2q6+q94q102q11+2q12+q132q154q16+2q18+q19+O(q20) q + 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} + q^{9} - 4 q^{10} - 2 q^{11} + 2 q^{12} + q^{13} - 2 q^{15} - 4 q^{16} + 2 q^{18} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 42
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 11 I1I_{1} split multiplicative -1 1 1 1
77 11 IVIV^{*} additive 1 2 8 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
1313 13B.3.1 13.56.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[196, 13, 169, 534], [14, 23, 325, 339], [1, 26, 0, 379], [1, 0, 26, 1], [211, 520, 468, 295], [1, 26, 0, 1], [521, 26, 520, 27]]
 
GL(2,Integers(546)).subgroup(gens)
 
Gens := [[196, 13, 169, 534], [14, 23, 325, 339], [1, 26, 0, 379], [1, 0, 26, 1], [211, 520, 468, 295], [1, 26, 0, 1], [521, 26, 520, 27]];
 
sub<GL(2,Integers(546))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 546=23713 546 = 2 \cdot 3 \cdot 7 \cdot 13 , index 336336, genus 99, and generators

(19613169534),(1423325339),(1260379),(10261),(211520468295),(12601),(5212652027)\left(\begin{array}{rr} 196 & 13 \\ 169 & 534 \end{array}\right),\left(\begin{array}{rr} 14 & 23 \\ 325 & 339 \end{array}\right),\left(\begin{array}{rr} 1 & 26 \\ 0 & 379 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 26 & 1 \end{array}\right),\left(\begin{array}{rr} 211 & 520 \\ 468 & 295 \end{array}\right),\left(\begin{array}{rr} 1 & 26 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 521 & 26 \\ 520 & 27 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[546])K:=\Q(E[546]) is a degree-4528742445287424 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/546Z)\GL_2(\Z/546\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
33 split multiplicative 44 49=72 49 = 7^{2}
77 additive 2626 3 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 13.
Its isogeny class 147.c consists of 2 curves linked by isogenies of degree 13.

Twists

The minimal quadratic twist of this elliptic curve is 147.b2, its twist by 7-7.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.588.1 Z/2Z\Z/2\Z not in database
33 Q(ζ7)+\Q(\zeta_{7})^+ Z/13Z\Z/13\Z 3.3.49.1-27.1-a2
66 6.0.1037232.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.425329947.2 Z/3Z\Z/3\Z not in database
99 9.3.203297472.1 Z/26Z\Z/26\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1818 18.0.1115906277282951168.1 Z/2ZZ/26Z\Z/2\Z \oplus \Z/26\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss split ord add ord ord ss ord ss ord ord ord ord ord ord
λ\lambda-invariant(s) 0,1 1 0 - 0 2 0,0 2 0,0 0 0 0 0 0 0
μ\mu-invariant(s) 0,0 0 0 - 0 0 0,0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.