Properties

Label 15341.b1
Conductor 1534115341
Discriminant 2.099×1014-2.099\times 10^{14}
j-invariant 952812800000017249876309 -\frac{9528128000000}{17249876309}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3x210158x+804091y^2+y=x^3-x^2-10158x+804091 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3x2z10158xz2+804091z3y^2z+yz^2=x^3-x^2z-10158xz^2+804091z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x313165200x+37357700688y^2=x^3-13165200x+37357700688 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([0, -1, 1, -10158, 804091])
 
Copy content gp:E = ellinit([0, -1, 1, -10158, 804091])
 
Copy content magma:E := EllipticCurve([0, -1, 1, -10158, 804091]);
 
Copy content oscar:E = elliptic_curve([0, -1, 1, -10158, 804091])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(101/4,5999/8)(101/4, 5999/8)1.84434686537499616017688883461.8443468653749961601768888346\infty

Integral points

None

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: NN  =  15341 15341  = 2322923^{2} \cdot 29
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  209879245051603-209879245051603 = 1233297-1 \cdot 23^{3} \cdot 29^{7}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  952812800000017249876309 -\frac{9528128000000}{17249876309}  = 121256297533-1 \cdot 2^{12} \cdot 5^{6} \cdot 29^{-7} \cdot 53^{3}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.43828112581664821256283105681.4382811258166482125628310568
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.654407571834360789861142848850.65440757183436078986114284885
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.15602129992136041.1560212999213604
Szpiro ratio: σm\sigma_{m} ≈ 4.2237436257558884.223743625755888

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.84434686537499616017688883461.8443468653749961601768888346
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 0.502388400181984269147726164600.50238840018198426914772616460
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 14 14  = 27 2\cdot7
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 12.97209859506962572174610984012.972098595069625721746109840
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

12.972098595L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5023881.844347141212.972098595\begin{aligned} 12.972098595 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.502388 \cdot 1.844347 \cdot 14}{1^2} \\ & \approx 12.972098595\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([0, -1, 1, -10158, 804091]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([0, -1, 1, -10158, 804091]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   15341.2.a.b

q+2q2+2q3+2q4+4q6+q9+4q12q134q16+7q17+2q187q19+O(q20) q + 2 q^{2} + 2 q^{3} + 2 q^{4} + 4 q^{6} + q^{9} + 4 q^{12} - q^{13} - 4 q^{16} + 7 q^{17} + 2 q^{18} - 7 q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 70560
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
2323 22 IIIIII additive -1 2 3 0
2929 77 I7I_{7} split multiplicative -1 1 7 7

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
77 7Nn 7.21.0.1

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[676, 6007, 7285, 1311], [9325, 14, 9324, 15], [1, 14, 0, 1], [10, 61, 8747, 5733], [3221, 14, 3871, 99], [1, 0, 14, 1], [2851, 4, 2447, 5]] GL(2,Integers(9338)).subgroup(gens)
 
Copy content magma:Gens := [[676, 6007, 7285, 1311], [9325, 14, 9324, 15], [1, 14, 0, 1], [10, 61, 8747, 5733], [3221, 14, 3871, 99], [1, 0, 14, 1], [2851, 4, 2447, 5]]; sub<GL(2,Integers(9338))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 9338=272329 9338 = 2 \cdot 7 \cdot 23 \cdot 29 , index 8484, genus 55, and generators

(676600772851311),(932514932415),(11401),(106187475733),(322114387199),(10141),(2851424475)\left(\begin{array}{rr} 676 & 6007 \\ 7285 & 1311 \end{array}\right),\left(\begin{array}{rr} 9325 & 14 \\ 9324 & 15 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 10 & 61 \\ 8747 & 5733 \end{array}\right),\left(\begin{array}{rr} 3221 & 14 \\ 3871 & 99 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 2851 & 4 \\ 2447 & 5 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[9338])K:=\Q(E[9338]) is a degree-2624111271936026241112719360 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/9338Z)\GL_2(\Z/9338\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
77 good 22 529=232 529 = 23^{2}
2323 additive 156156 29 29
2929 split multiplicative 3030 529=232 529 = 23^{2}

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 15341.b consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.2668.1 Z/2Z\Z/2\Z not in database
66 6.0.4747855408.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss ord ss ss ss ord ord ord add split ord ord ord ord ord
λ\lambda-invariant(s) 2,9 1 1,1 1,1 1,1 3 1 1 - 2 1 1 1 1 1
μ\mu-invariant(s) 0,0 0 0,0 0,0 0,0 0 0 0 - 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.