Properties

Label 162.c2
Conductor 162162
Discriminant 169869312-169869312
j-invariant 11590886252097152 -\frac{1159088625}{2097152}
CM no
Rank 00
Torsion structure Z/3Z\Z/{3}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3x295x697y^2+xy+y=x^3-x^2-95x-697 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3x2z95xz2697z3y^2z+xyz+yz^2=x^3-x^2z-95xz^2-697z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31515x46106y^2=x^3-1515x-46106 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([1, -1, 1, -95, -697])
 
Copy content gp:E = ellinit([1, -1, 1, -95, -697])
 
Copy content magma:E := EllipticCurve([1, -1, 1, -95, -697]);
 
Copy content oscar:E = elliptic_curve([1, -1, 1, -95, -697])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/3Z\Z/{3}\Z

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(19,54)(19, 54)0033

Integral points

(19,54) \left(19, 54\right) , (19,74) \left(19, -74\right) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: NN  =  162 162  = 2342 \cdot 3^{4}
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  169869312-169869312 = 122134-1 \cdot 2^{21} \cdot 3^{4}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  11590886252097152 -\frac{1159088625}{2097152}  = 122132531013-1 \cdot 2^{-21} \cdot 3^{2} \cdot 5^{3} \cdot 101^{3}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.269368078877640181830840250720.26936807887764018183084025072
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.096836017345063048634241494921-0.096836017345063048634241494921
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.11234902009037521.1123490200903752
Szpiro ratio: σm\sigma_{m} ≈ 5.2446724066580395.244672406658039

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 0.721701058907301599365509129380.72170105890730159936550912938
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 21 21  = (37)1 ( 3 \cdot 7 )\cdot1
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 33
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.68396913745037039851952130191.6839691374503703985195213019
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

1.683969137L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.7217011.00000021321.683969137\begin{aligned} 1.683969137 \approx L(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.721701 \cdot 1.000000 \cdot 21}{3^2} \\ & \approx 1.683969137\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([1, -1, 1, -95, -697]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([1, -1, 1, -95, -697]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   162.2.a.c

q+q2+q4+2q7+q83q11+2q13+2q14+q163q17q19+O(q20) q + q^{2} + q^{4} + 2 q^{7} + q^{8} - 3 q^{11} + 2 q^{13} + 2 q^{14} + q^{16} - 3 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 42
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 2121 I21I_{21} split multiplicative -1 1 21 21
33 11 IIII additive 1 4 4 0

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2G 8.2.0.1
33 3B.1.1 3.8.0.1
77 7B.2.3 7.16.0.2

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[281, 392, 112, 393], [73, 402, 0, 1], [1, 426, 42, 253], [1, 216, 0, 1], [1, 0, 462, 1], [85, 42, 189, 43], [1, 0, 168, 1], [337, 168, 336, 169], [295, 42, 231, 211], [22, 321, 189, 169], [249, 226, 448, 345], [1, 0, 420, 1], [1, 168, 0, 1], [463, 282, 420, 295]] GL(2,Integers(504)).subgroup(gens)
 
Copy content magma:Gens := [[281, 392, 112, 393], [73, 402, 0, 1], [1, 426, 42, 253], [1, 216, 0, 1], [1, 0, 462, 1], [85, 42, 189, 43], [1, 0, 168, 1], [337, 168, 336, 169], [295, 42, 231, 211], [22, 321, 189, 169], [249, 226, 448, 345], [1, 0, 420, 1], [1, 168, 0, 1], [463, 282, 420, 295]]; sub<GL(2,Integers(504))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 504=23327 504 = 2^{3} \cdot 3^{2} \cdot 7 , index 768768, genus 2121, and generators

(281392112393),(7340201),(142642253),(121601),(104621),(854218943),(101681),(337168336169),(29542231211),(22321189169),(249226448345),(104201),(116801),(463282420295)\left(\begin{array}{rr} 281 & 392 \\ 112 & 393 \end{array}\right),\left(\begin{array}{rr} 73 & 402 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 426 \\ 42 & 253 \end{array}\right),\left(\begin{array}{rr} 1 & 216 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 462 & 1 \end{array}\right),\left(\begin{array}{rr} 85 & 42 \\ 189 & 43 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 168 & 1 \end{array}\right),\left(\begin{array}{rr} 337 & 168 \\ 336 & 169 \end{array}\right),\left(\begin{array}{rr} 295 & 42 \\ 231 & 211 \end{array}\right),\left(\begin{array}{rr} 22 & 321 \\ 189 & 169 \end{array}\right),\left(\begin{array}{rr} 249 & 226 \\ 448 & 345 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 420 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 168 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 463 & 282 \\ 420 & 295 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[504])K:=\Q(E[504]) is a degree-1567641615676416 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/504Z)\GL_2(\Z/504\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 81=34 81 = 3^{4}
33 additive 88 1 1
77 good 22 81=34 81 = 3^{4}

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3, 7 and 21.
Its isogeny class 162.c consists of 4 curves linked by isogenies of degrees dividing 21.

Twists

The minimal quadratic twist of this elliptic curve is 162.b2, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/3Z\cong \Z/{3}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.648.1 Z/6Z\Z/6\Z not in database
66 6.0.3359232.4 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.0.177147.2 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
66 6.0.110270727.2 Z/21Z\Z/21\Z not in database
99 9.3.74384733888.1 Z/9Z\Z/9\Z not in database
1212 12.2.5777633090469888.10 Z/12Z\Z/12\Z not in database
1818 18.0.1062353018033006514536448.1 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1818 18.0.351496200956998572502045949952.2 Z/42Z\Z/42\Z not in database
2121 21.3.12777737809210143774260519108727.3 Z/21Z\Z/21\Z not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

pp 2 3 5 7
Reduction type split add ss ord
λ\lambda-invariant(s) 4 - 0,0 0
μ\mu-invariant(s) 0 - 0,0 1

All Iwasawa λ\lambda and μ\mu-invariants for primes p11p\ge 11 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.