Properties

Label 232544.i1
Conductor 232544232544
Discriminant 6.433×1023-6.433\times 10^{23}
j-invariant 47675785945529664000929293739471222707 -\frac{47675785945529664000}{929293739471222707}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x36682520x+39157150032y^2=x^3-6682520x+39157150032 Copy content Toggle raw display (homogenize, simplify)
y2z=x36682520xz2+39157150032z3y^2z=x^3-6682520xz^2+39157150032z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x36682520x+39157150032y^2=x^3-6682520x+39157150032 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([0, 0, 0, -6682520, 39157150032])
 
Copy content gp:E = ellinit([0, 0, 0, -6682520, 39157150032])
 
Copy content magma:E := EllipticCurve([0, 0, 0, -6682520, 39157150032]);
 
Copy content oscar:E = elliptic_curve([0, 0, 0, -6682520, 39157150032])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  232544 232544  = 25132432^{5} \cdot 13^{2} \cdot 43
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  643279429511727667130368-643279429511727667130368 = 12121324311-1 \cdot 2^{12} \cdot 13^{2} \cdot 43^{11}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  47675785945529664000929293739471222707 -\frac{47675785945529664000}{929293739471222707}  = 12933531343117131813-1 \cdot 2^{9} \cdot 3^{3} \cdot 5^{3} \cdot 13 \cdot 43^{-11} \cdot 71^{3} \cdot 181^{3}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 3.24938387160959246845909311793.2493838716095924684590931179
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 2.12874513147272436969961308952.1287451314727243696996130895
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.18475537085955751.1847553708595575
Szpiro ratio: σm\sigma_{m} ≈ 5.0421361643676195.042136164367619

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 0.0766648478138886144847034762450.076664847813888614484703476245
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 22 22  = 2111 2\cdot1\cdot11
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.68662665190554951866347647741.6866266519055495186634764774
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

1.686626652L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0766651.00000022121.686626652\begin{aligned} 1.686626652 \approx L(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.076665 \cdot 1.000000 \cdot 22}{1^2} \\ & \approx 1.686626652\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([0, 0, 0, -6682520, 39157150032]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([0, 0, 0, -6682520, 39157150032]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 232544.2.a.i

q3q93q17+O(q20) q - 3 q^{9} - 3 q^{17} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 12312960
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 IIIIII^{*} additive 1 5 12 0
1313 11 IIII additive 1 2 2 0
4343 1111 I11I_{11} split multiplicative -1 1 11 11

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
1111 11Nn 11.55.1.1

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[1068, 11, 913, 1882], [1, 22, 0, 1], [949, 34, 1552, 1823], [1, 0, 22, 1], [12, 11, 121, 111], [1871, 22, 1870, 23], [3, 4, 26, 35], [1508, 765, 391, 1479]] GL(2,Integers(1892)).subgroup(gens)
 
Copy content magma:Gens := [[1068, 11, 913, 1882], [1, 22, 0, 1], [949, 34, 1552, 1823], [1, 0, 22, 1], [12, 11, 121, 111], [1871, 22, 1870, 23], [3, 4, 26, 35], [1508, 765, 391, 1479]]; sub<GL(2,Integers(1892))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1892=221143 1892 = 2^{2} \cdot 11 \cdot 43 , index 220220, genus 1313, and generators

(1068119131882),(12201),(9493415521823),(10221),(1211121111),(187122187023),(342635),(15087653911479)\left(\begin{array}{rr} 1068 & 11 \\ 913 & 1882 \end{array}\right),\left(\begin{array}{rr} 1 & 22 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 949 & 34 \\ 1552 & 1823 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 22 & 1 \end{array}\right),\left(\begin{array}{rr} 12 & 11 \\ 121 & 111 \end{array}\right),\left(\begin{array}{rr} 1871 & 22 \\ 1870 & 23 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 26 & 35 \end{array}\right),\left(\begin{array}{rr} 1508 & 765 \\ 391 & 1479 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1892])K:=\Q(E[1892]) is a degree-1922393088019223930880 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1892Z)\GL_2(\Z/1892\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 7267=13243 7267 = 13^{2} \cdot 43
1111 good 22 5408=25132 5408 = 2^{5} \cdot 13^{2}
1313 additive 3838 1376=2543 1376 = 2^{5} \cdot 43
4343 split multiplicative 4444 5408=25132 5408 = 2^{5} \cdot 13^{2}

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 232544.i consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 232544.h1, its twist by 4-4.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.29068.2 Z/2Z\Z/2\Z not in database
66 6.0.36332790832.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.