sage: E = EllipticCurve([0, 0, 1, -7, 12])
gp: E = ellinit([0, 0, 1, -7, 12])
magma: E := EllipticCurve([0, 0, 1, -7, 12]);
oscar: E = elliptic_curve([0, 0, 1, -7, 12])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z \Z Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 7 , 17 ) (7, 17) ( 7 , 1 7 ) 0.032236886628249108260991728075 0.032236886628249108260991728075 0 . 0 3 2 2 3 6 8 8 6 6 2 8 2 4 9 1 0 8 2 6 0 9 9 1 7 2 8 0 7 5 ∞ \infty ∞
( − 3 , 2 ) \left(-3, 2\right) ( − 3 , 2 ) , ( − 3 , − 3 ) \left(-3, -3\right) ( − 3 , − 3 ) , ( 0 , 3 ) \left(0, 3\right) ( 0 , 3 ) , ( 0 , − 4 ) \left(0, -4\right) ( 0 , − 4 ) , ( 1 , 2 ) \left(1, 2\right) ( 1 , 2 ) , ( 1 , − 3 ) \left(1, -3\right) ( 1 , − 3 ) , ( 2 , 2 ) \left(2, 2\right) ( 2 , 2 ) , ( 2 , − 3 ) \left(2, -3\right) ( 2 , − 3 ) , ( 7 , 17 ) \left(7, 17\right) ( 7 , 1 7 ) , ( 7 , − 18 ) \left(7, -18\right) ( 7 , − 1 8 ) , ( 22 , 102 ) \left(22, 102\right) ( 2 2 , 1 0 2 ) , ( 22 , − 103 ) \left(22, -103\right) ( 2 2 , − 1 0 3 ) , ( 35 , 206 ) \left(35, 206\right) ( 3 5 , 2 0 6 ) , ( 35 , − 207 ) \left(35, -207\right) ( 3 5 , − 2 0 7 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
245 245 2 4 5 = 5 ⋅ 7 2 5 \cdot 7^{2} 5 ⋅ 7 2
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
− 42875 -42875 − 4 2 8 7 5 = − 1 ⋅ 5 3 ⋅ 7 3 -1 \cdot 5^{3} \cdot 7^{3} − 1 ⋅ 5 3 ⋅ 7 3
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
− 110592 125 -\frac{110592}{125} − 1 2 5 1 1 0 5 9 2 = − 1 ⋅ 2 12 ⋅ 3 3 ⋅ 5 − 3 -1 \cdot 2^{12} \cdot 3^{3} \cdot 5^{-3} − 1 ⋅ 2 1 2 ⋅ 3 3 ⋅ 5 − 3
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ − 0.41676082073262685941866133847 -0.41676082073262685941866133847 − 0 . 4 1 6 7 6 0 8 2 0 7 3 2 6 2 6 8 5 9 4 1 8 6 6 1 3 3 8 4 7
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 0.90323835799645518569499952433 -0.90323835799645518569499952433 − 0 . 9 0 3 2 3 8 3 5 7 9 9 6 4 5 5 1 8 5 6 9 4 9 9 9 5 2 4 3 3
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.9802957926219806 0.9802957926219806 0 . 9 8 0 2 9 5 7 9 2 6 2 1 9 8 0 6
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 3.3690833446180584 3.3690833446180584 3 . 3 6 9 0 8 3 3 4 4 6 1 8 0 5 8 4
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.032236886628249108260991728075 0.032236886628249108260991728075 0 . 0 3 2 2 3 6 8 8 6 6 2 8 2 4 9 1 0 8 2 6 0 9 9 1 7 2 8 0 7 5
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 3.2744322569434663260680266853 3.2744322569434663260680266853 3 . 2 7 4 4 3 2 2 5 6 9 4 3 4 6 6 3 2 6 0 6 8 0 2 6 6 8 5 3
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 6 6 6
= 3 ⋅ 2 3\cdot2 3 ⋅ 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 0.63334500863381026730431838092 0.63334500863381026730431838092 0 . 6 3 3 3 4 5 0 0 8 6 3 3 8 1 0 2 6 7 3 0 4 3 1 8 3 8 0 9 2
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
0.633345009 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 3.274432 ⋅ 0.032237 ⋅ 6 1 2 ≈ 0.633345009 \begin{aligned} 0.633345009 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 3.274432 \cdot 0.032237 \cdot 6}{1^2} \\ & \approx 0.633345009\end{aligned} 0 . 6 3 3 3 4 5 0 0 9 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 3 . 2 7 4 4 3 2 ⋅ 0 . 0 3 2 2 3 7 ⋅ 6 ≈ 0 . 6 3 3 3 4 5 0 0 9
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, 0, 1, -7, 12]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, 0, 1, -7, 12]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
245.2.a.a
q − 2 q 2 − 3 q 3 + 2 q 4 + q 5 + 6 q 6 + 6 q 9 − 2 q 10 + q 11 − 6 q 12 − 3 q 13 − 3 q 15 − 4 q 16 + 3 q 17 − 12 q 18 − 6 q 19 + O ( q 20 ) q - 2 q^{2} - 3 q^{3} + 2 q^{4} + q^{5} + 6 q^{6} + 6 q^{9} - 2 q^{10} + q^{11} - 6 q^{12} - 3 q^{13} - 3 q^{15} - 4 q^{16} + 3 q^{17} - 12 q^{18} - 6 q^{19} + O(q^{20}) q − 2 q 2 − 3 q 3 + 2 q 4 + q 5 + 6 q 6 + 6 q 9 − 2 q 1 0 + q 1 1 − 6 q 1 2 − 3 q 1 3 − 3 q 1 5 − 4 q 1 6 + 3 q 1 7 − 1 2 q 1 8 − 6 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 2 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[31, 4, 31, 5], [1, 74, 4, 157], [1, 0, 6, 1], [6, 5, 199, 201], [127, 6, 171, 19], [1, 6, 0, 1], [205, 6, 204, 7]]
GL(2,Integers(210)).subgroup(gens)
magma: Gens := [[31, 4, 31, 5], [1, 74, 4, 157], [1, 0, 6, 1], [6, 5, 199, 201], [127, 6, 171, 19], [1, 6, 0, 1], [205, 6, 204, 7]];
sub<GL(2,Integers(210))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 210 = 2 ⋅ 3 ⋅ 5 ⋅ 7 210 = 2 \cdot 3 \cdot 5 \cdot 7 2 1 0 = 2 ⋅ 3 ⋅ 5 ⋅ 7 , index 12 12 1 2 , genus 1 1 1 , and generators
( 31 4 31 5 ) , ( 1 74 4 157 ) , ( 1 0 6 1 ) , ( 6 5 199 201 ) , ( 127 6 171 19 ) , ( 1 6 0 1 ) , ( 205 6 204 7 ) \left(\begin{array}{rr}
31 & 4 \\
31 & 5
\end{array}\right),\left(\begin{array}{rr}
1 & 74 \\
4 & 157
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
6 & 1
\end{array}\right),\left(\begin{array}{rr}
6 & 5 \\
199 & 201
\end{array}\right),\left(\begin{array}{rr}
127 & 6 \\
171 & 19
\end{array}\right),\left(\begin{array}{rr}
1 & 6 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
205 & 6 \\
204 & 7
\end{array}\right) ( 3 1 3 1 4 5 ) , ( 1 4 7 4 1 5 7 ) , ( 1 6 0 1 ) , ( 6 1 9 9 5 2 0 1 ) , ( 1 2 7 1 7 1 6 1 9 ) , ( 1 0 6 1 ) , ( 2 0 5 2 0 4 6 7 ) .
The torsion field K : = Q ( E [ 210 ] ) K:=\Q(E[210]) K : = Q ( E [ 2 1 0 ] ) is a degree-23224320 23224320 2 3 2 2 4 3 2 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 210 Z ) \GL_2(\Z/210\Z) GL 2 ( Z / 2 1 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
gp: ellisomat(E)
This curve has no rational isogenies. Its isogeny class 245.a
consists of this curve only.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
3 3 3
3.1.140.1
Z / 2 Z \Z/2\Z Z / 2 Z
not in database
6 6 6
6.0.686000.1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
8 8 8
8.2.257298363.1
Z / 3 Z \Z/3\Z Z / 3 Z
not in database
12 12 1 2
deg 12
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
16 16 1 6
16.0.66202447602479769.1
Z / 3 Z ⊕ Z / 3 Z \Z/3\Z \oplus \Z/3\Z Z / 3 Z ⊕ Z / 3 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
11
17
19
23
29
31
37
41
47
53
59
61
67
73
79
83
89
97