This curve and its quadratic twists form the unique Q ‾ \overline{\mathbb{Q}} Q -isomorphism class of elliptic curves over Q \mathbb{Q} Q that is an exception to the local-global principle for rational isogenies of prime degree. Each admits a rational 7-isogeny locally everywhere but not globally [10.5802/jtnb.807 , MR:2950703 , arXiv:1006.1782 ].
sage: E = EllipticCurve([1, -1, 0, -107, -379])
gp: E = ellinit([1, -1, 0, -107, -379])
magma: E := EllipticCurve([1, -1, 0, -107, -379]);
oscar: E = elliptic_curve([1, -1, 0, -107, -379])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z \Z Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 5 , 6 ) (-5, 6) ( − 5 , 6 ) 0.51461586585623606313345550069 0.51461586585623606313345550069 0 . 5 1 4 6 1 5 8 6 5 8 5 6 2 3 6 0 6 3 1 3 3 4 5 5 5 0 0 6 9 ∞ \infty ∞
( − 5 , 6 ) \left(-5, 6\right) ( − 5 , 6 ) , ( − 5 , − 1 ) \left(-5, -1\right) ( − 5 , − 1 ) , ( 23 , 83 ) \left(23, 83\right) ( 2 3 , 8 3 ) , ( 23 , − 106 ) \left(23, -106\right) ( 2 3 , − 1 0 6 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
2450 2450 2 4 5 0 = 2 ⋅ 5 2 ⋅ 7 2 2 \cdot 5^{2} \cdot 7^{2} 2 ⋅ 5 2 ⋅ 7 2
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
7683200 7683200 7 6 8 3 2 0 0 = 2 7 ⋅ 5 2 ⋅ 7 4 2^{7} \cdot 5^{2} \cdot 7^{4} 2 7 ⋅ 5 2 ⋅ 7 4
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
2268945 128 \frac{2268945}{128} 1 2 8 2 2 6 8 9 4 5 = 2 − 7 ⋅ 3 3 ⋅ 5 ⋅ 7 5 2^{-7} \cdot 3^{3} \cdot 5 \cdot 7^{5} 2 − 7 ⋅ 3 3 ⋅ 5 ⋅ 7 5
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 0.075912999424459894422757609836 0.075912999424459894422757609836 0 . 0 7 5 9 1 2 9 9 9 4 2 4 4 5 9 8 9 4 4 2 2 7 5 7 6 0 9 8 3 6
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 0.84096336899966126971248652685 -0.84096336899966126971248652685 − 0 . 8 4 0 9 6 3 3 6 8 9 9 9 6 6 1 2 6 9 7 1 2 4 8 6 5 2 6 8 5
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.2169692547295907 1.2169692547295907 1 . 2 1 6 9 6 9 2 5 4 7 2 9 5 9 0 7
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 3.2852199804138564 3.2852199804138564 3 . 2 8 5 2 1 9 9 8 0 4 1 3 8 5 6 4
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.51461586585623606313345550069 0.51461586585623606313345550069 0 . 5 1 4 6 1 5 8 6 5 8 5 6 2 3 6 0 6 3 1 3 3 4 5 5 5 0 0 6 9
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 1.4889805975421043380181773882 1.4889805975421043380181773882 1 . 4 8 8 9 8 0 5 9 7 5 4 2 1 0 4 3 3 8 0 1 8 1 7 7 3 8 8 2
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 3 3 3
= 1 ⋅ 1 ⋅ 3 1\cdot1\cdot3 1 ⋅ 1 ⋅ 3
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 2.2987591183417973482530848660 2.2987591183417973482530848660 2 . 2 9 8 7 5 9 1 1 8 3 4 1 7 9 7 3 4 8 2 5 3 0 8 4 8 6 6 0
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
2.298759118 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 1.488981 ⋅ 0.514616 ⋅ 3 1 2 ≈ 2.298759118 \begin{aligned} 2.298759118 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.488981 \cdot 0.514616 \cdot 3}{1^2} \\ & \approx 2.298759118\end{aligned} 2 . 2 9 8 7 5 9 1 1 8 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 1 . 4 8 8 9 8 1 ⋅ 0 . 5 1 4 6 1 6 ⋅ 3 ≈ 2 . 2 9 8 7 5 9 1 1 8
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, -1, 0, -107, -379]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, -1, 0, -107, -379]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
2450.2.a.i
q − q 2 + q 4 − q 8 − 3 q 9 − 2 q 11 + q 16 + 7 q 17 + 3 q 18 + O ( q 20 ) q - q^{2} + q^{4} - q^{8} - 3 q^{9} - 2 q^{11} + q^{16} + 7 q^{17} + 3 q^{18} + O(q^{20}) q − q 2 + q 4 − q 8 − 3 q 9 − 2 q 1 1 + q 1 6 + 7 q 1 7 + 3 q 1 8 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 3 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[21, 260, 20, 181], [176, 245, 35, 71], [223, 0, 0, 279], [1, 140, 0, 1], [225, 56, 224, 225], [141, 0, 0, 141], [1, 0, 56, 1], [156, 245, 215, 271], [21, 130, 220, 171], [1, 0, 140, 1], [141, 70, 0, 141], [211, 70, 0, 211], [161, 60, 80, 241], [71, 140, 210, 71], [91, 235, 80, 241]]
GL(2,Integers(280)).subgroup(gens)
magma: Gens := [[21, 260, 20, 181], [176, 245, 35, 71], [223, 0, 0, 279], [1, 140, 0, 1], [225, 56, 224, 225], [141, 0, 0, 141], [1, 0, 56, 1], [156, 245, 215, 271], [21, 130, 220, 171], [1, 0, 140, 1], [141, 70, 0, 141], [211, 70, 0, 211], [161, 60, 80, 241], [71, 140, 210, 71], [91, 235, 80, 241]];
sub<GL(2,Integers(280))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 280 = 2 3 ⋅ 5 ⋅ 7 280 = 2^{3} \cdot 5 \cdot 7 2 8 0 = 2 3 ⋅ 5 ⋅ 7 , index 224 224 2 2 4 , genus 5 5 5 , and generators
( 21 260 20 181 ) , ( 176 245 35 71 ) , ( 223 0 0 279 ) , ( 1 140 0 1 ) , ( 225 56 224 225 ) , ( 141 0 0 141 ) , ( 1 0 56 1 ) , ( 156 245 215 271 ) , ( 21 130 220 171 ) , ( 1 0 140 1 ) , ( 141 70 0 141 ) , ( 211 70 0 211 ) , ( 161 60 80 241 ) , ( 71 140 210 71 ) , ( 91 235 80 241 ) \left(\begin{array}{rr}
21 & 260 \\
20 & 181
\end{array}\right),\left(\begin{array}{rr}
176 & 245 \\
35 & 71
\end{array}\right),\left(\begin{array}{rr}
223 & 0 \\
0 & 279
\end{array}\right),\left(\begin{array}{rr}
1 & 140 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
225 & 56 \\
224 & 225
\end{array}\right),\left(\begin{array}{rr}
141 & 0 \\
0 & 141
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
56 & 1
\end{array}\right),\left(\begin{array}{rr}
156 & 245 \\
215 & 271
\end{array}\right),\left(\begin{array}{rr}
21 & 130 \\
220 & 171
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
140 & 1
\end{array}\right),\left(\begin{array}{rr}
141 & 70 \\
0 & 141
\end{array}\right),\left(\begin{array}{rr}
211 & 70 \\
0 & 211
\end{array}\right),\left(\begin{array}{rr}
161 & 60 \\
80 & 241
\end{array}\right),\left(\begin{array}{rr}
71 & 140 \\
210 & 71
\end{array}\right),\left(\begin{array}{rr}
91 & 235 \\
80 & 241
\end{array}\right) ( 2 1 2 0 2 6 0 1 8 1 ) , ( 1 7 6 3 5 2 4 5 7 1 ) , ( 2 2 3 0 0 2 7 9 ) , ( 1 0 1 4 0 1 ) , ( 2 2 5 2 2 4 5 6 2 2 5 ) , ( 1 4 1 0 0 1 4 1 ) , ( 1 5 6 0 1 ) , ( 1 5 6 2 1 5 2 4 5 2 7 1 ) , ( 2 1 2 2 0 1 3 0 1 7 1 ) , ( 1 1 4 0 0 1 ) , ( 1 4 1 0 7 0 1 4 1 ) , ( 2 1 1 0 7 0 2 1 1 ) , ( 1 6 1 8 0 6 0 2 4 1 ) , ( 7 1 2 1 0 1 4 0 7 1 ) , ( 9 1 8 0 2 3 5 2 4 1 ) .
The torsion field K : = Q ( E [ 280 ] ) K:=\Q(E[280]) K : = Q ( E [ 2 8 0 ] ) is a degree-6635520 6635520 6 6 3 5 5 2 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 280 Z ) \GL_2(\Z/280\Z) GL 2 ( Z / 2 8 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
nonsplit multiplicative
4 4 4
1225 = 5 2 ⋅ 7 2 1225 = 5^{2} \cdot 7^{2} 1 2 2 5 = 5 2 ⋅ 7 2
5 5 5
additive
10 10 1 0
98 = 2 ⋅ 7 2 98 = 2 \cdot 7^{2} 9 8 = 2 ⋅ 7 2
7 7 7
additive
20 20 2 0
25 = 5 2 25 = 5^{2} 2 5 = 5 2
gp: ellisomat(E)
This curve has no rational isogenies. Its isogeny class 2450.i
consists of this curve only.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
17
23
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97