y 2 + x y + y = x 3 − x 2 − 2680 x − 50053 y^2+xy+y=x^3-x^2-2680x-50053 y 2 + x y + y = x 3 − x 2 − 2 6 8 0 x − 5 0 0 5 3
(homogenize , simplify )
y 2 z + x y z + y z 2 = x 3 − x 2 z − 2680 x z 2 − 50053 z 3 y^2z+xyz+yz^2=x^3-x^2z-2680xz^2-50053z^3 y 2 z + x y z + y z 2 = x 3 − x 2 z − 2 6 8 0 x z 2 − 5 0 0 5 3 z 3
(dehomogenize , simplify )
y 2 = x 3 − 42875 x − 3246250 y^2=x^3-42875x-3246250 y 2 = x 3 − 4 2 8 7 5 x − 3 2 4 6 2 5 0
(homogenize , minimize )
sage: E = EllipticCurve([1, -1, 1, -2680, -50053])
gp: E = ellinit([1, -1, 1, -2680, -50053])
magma: E := EllipticCurve([1, -1, 1, -2680, -50053]);
oscar: E = elliptic_curve([1, -1, 1, -2680, -50053])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z \Z Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 31 , 65 ) (-31, 65) ( − 3 1 , 6 5 ) 0.31348842129962495504329837459 0.31348842129962495504329837459 0 . 3 1 3 4 8 8 4 2 1 2 9 9 6 2 4 9 5 5 0 4 3 2 9 8 3 7 4 5 9 ∞ \infty ∞
( − 31 , 65 ) \left(-31, 65\right) ( − 3 1 , 6 5 ) , ( − 31 , − 35 ) \left(-31, -35\right) ( − 3 1 , − 3 5 ) , ( − 25 , 41 ) \left(-25, 41\right) ( − 2 5 , 4 1 ) , ( − 25 , − 17 ) \left(-25, -17\right) ( − 2 5 , − 1 7 ) , ( 69 , 265 ) \left(69, 265\right) ( 6 9 , 2 6 5 ) , ( 69 , − 335 ) \left(69, -335\right) ( 6 9 , − 3 3 5 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
2450 2450 2 4 5 0 = 2 ⋅ 5 2 ⋅ 7 2 2 \cdot 5^{2} \cdot 7^{2} 2 ⋅ 5 2 ⋅ 7 2
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
120050000000 120050000000 1 2 0 0 5 0 0 0 0 0 0 0 = 2 7 ⋅ 5 8 ⋅ 7 4 2^{7} \cdot 5^{8} \cdot 7^{4} 2 7 ⋅ 5 8 ⋅ 7 4
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
2268945 128 \frac{2268945}{128} 1 2 8 2 2 6 8 9 4 5 = 2 − 7 ⋅ 3 3 ⋅ 5 ⋅ 7 5 2^{-7} \cdot 3^{3} \cdot 5 \cdot 7^{5} 2 − 7 ⋅ 3 3 ⋅ 5 ⋅ 7 5
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 0.88063195564151008172313727645 0.88063195564151008172313727645 0 . 8 8 0 6 3 1 9 5 5 6 4 1 5 1 0 0 8 1 7 2 3 1 3 7 2 7 6 4 5
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 0.84096336899966126971248652685 -0.84096336899966126971248652685 − 0 . 8 4 0 9 6 3 3 6 8 9 9 9 6 6 1 2 6 9 7 1 2 4 8 6 5 2 6 8 5
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.2169692547295907 1.2169692547295907 1 . 2 1 6 9 6 9 2 5 4 7 2 9 5 9 0 7
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.522639428626721 4.522639428626721 4 . 5 2 2 6 3 9 4 2 8 6 2 6 7 2 1
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.31348842129962495504329837459 0.31348842129962495504329837459 0 . 3 1 3 4 8 8 4 2 1 2 9 9 6 2 4 9 5 5 0 4 3 2 9 8 3 7 4 5 9
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 0.66589236665648031604798968596 0.66589236665648031604798968596 0 . 6 6 5 8 9 2 3 6 6 6 5 6 4 8 0 3 1 6 0 4 7 9 8 9 6 8 5 9 6
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 21 21 2 1
= 7 ⋅ 3 ⋅ 1 7\cdot3\cdot1 7 ⋅ 3 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 4.3837404823508317164903631023 4.3837404823508317164903631023 4 . 3 8 3 7 4 0 4 8 2 3 5 0 8 3 1 7 1 6 4 9 0 3 6 3 1 0 2 3
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
4.383740482 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.665892 ⋅ 0.313488 ⋅ 21 1 2 ≈ 4.383740482 \begin{aligned} 4.383740482 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.665892 \cdot 0.313488 \cdot 21}{1^2} \\ & \approx 4.383740482\end{aligned} 4 . 3 8 3 7 4 0 4 8 2 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 0 . 6 6 5 8 9 2 ⋅ 0 . 3 1 3 4 8 8 ⋅ 2 1 ≈ 4 . 3 8 3 7 4 0 4 8 2
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, -1, 1, -2680, -50053]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, -1, 1, -2680, -50053]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
2450.2.a.y
q + q 2 + q 4 + q 8 − 3 q 9 − 2 q 11 + q 16 − 7 q 17 − 3 q 18 + O ( q 20 ) q + q^{2} + q^{4} + q^{8} - 3 q^{9} - 2 q^{11} + q^{16} - 7 q^{17} - 3 q^{18} + O(q^{20}) q + q 2 + q 4 + q 8 − 3 q 9 − 2 q 1 1 + q 1 6 − 7 q 1 7 − 3 q 1 8 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 3 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[29, 0, 0, 29], [1, 28, 0, 1], [43, 14, 0, 43], [21, 36, 20, 13], [44, 21, 47, 47], [49, 4, 24, 17], [29, 14, 0, 29], [1, 0, 28, 1], [35, 11, 24, 17], [8, 21, 35, 15], [15, 28, 42, 15], [21, 18, 52, 3]]
GL(2,Integers(56)).subgroup(gens)
magma: Gens := [[29, 0, 0, 29], [1, 28, 0, 1], [43, 14, 0, 43], [21, 36, 20, 13], [44, 21, 47, 47], [49, 4, 24, 17], [29, 14, 0, 29], [1, 0, 28, 1], [35, 11, 24, 17], [8, 21, 35, 15], [15, 28, 42, 15], [21, 18, 52, 3]];
sub<GL(2,Integers(56))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
label 56.224.5-56.t.1.4 ,
level 56 = 2 3 ⋅ 7 56 = 2^{3} \cdot 7 5 6 = 2 3 ⋅ 7 , index 224 224 2 2 4 , genus 5 5 5 , and generators
( 29 0 0 29 ) , ( 1 28 0 1 ) , ( 43 14 0 43 ) , ( 21 36 20 13 ) , ( 44 21 47 47 ) , ( 49 4 24 17 ) , ( 29 14 0 29 ) , ( 1 0 28 1 ) , ( 35 11 24 17 ) , ( 8 21 35 15 ) , ( 15 28 42 15 ) , ( 21 18 52 3 ) \left(\begin{array}{rr}
29 & 0 \\
0 & 29
\end{array}\right),\left(\begin{array}{rr}
1 & 28 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
43 & 14 \\
0 & 43
\end{array}\right),\left(\begin{array}{rr}
21 & 36 \\
20 & 13
\end{array}\right),\left(\begin{array}{rr}
44 & 21 \\
47 & 47
\end{array}\right),\left(\begin{array}{rr}
49 & 4 \\
24 & 17
\end{array}\right),\left(\begin{array}{rr}
29 & 14 \\
0 & 29
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
28 & 1
\end{array}\right),\left(\begin{array}{rr}
35 & 11 \\
24 & 17
\end{array}\right),\left(\begin{array}{rr}
8 & 21 \\
35 & 15
\end{array}\right),\left(\begin{array}{rr}
15 & 28 \\
42 & 15
\end{array}\right),\left(\begin{array}{rr}
21 & 18 \\
52 & 3
\end{array}\right) ( 2 9 0 0 2 9 ) , ( 1 0 2 8 1 ) , ( 4 3 0 1 4 4 3 ) , ( 2 1 2 0 3 6 1 3 ) , ( 4 4 4 7 2 1 4 7 ) , ( 4 9 2 4 4 1 7 ) , ( 2 9 0 1 4 2 9 ) , ( 1 2 8 0 1 ) , ( 3 5 2 4 1 1 1 7 ) , ( 8 3 5 2 1 1 5 ) , ( 1 5 4 2 2 8 1 5 ) , ( 2 1 5 2 1 8 3 ) .
The torsion field K : = Q ( E [ 56 ] ) K:=\Q(E[56]) K : = Q ( E [ 5 6 ] ) is a degree-13824 13824 1 3 8 2 4 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 56 Z ) \GL_2(\Z/56\Z) GL 2 ( Z / 5 6 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
split multiplicative
4 4 4
1225 = 5 2 ⋅ 7 2 1225 = 5^{2} \cdot 7^{2} 1 2 2 5 = 5 2 ⋅ 7 2
5 5 5
additive
14 14 1 4
98 = 2 ⋅ 7 2 98 = 2 \cdot 7^{2} 9 8 = 2 ⋅ 7 2
7 7 7
additive
20 20 2 0
25 = 5 2 25 = 5^{2} 2 5 = 5 2
gp: ellisomat(E)
This curve has no rational isogenies. Its isogeny class 2450.y
consists of this curve only.
The minimal quadratic twist of this elliptic curve is
2450.i1 , its twist by 5 5 5 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
17
23
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97