Properties

Label 26.b1
Conductor 2626
Discriminant 125497034-125497034
j-invariant 1064019559329125497034 -\frac{1064019559329}{125497034}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3x2213x1257y^2+xy+y=x^3-x^2-213x-1257 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3x2z213xz21257z3y^2z+xyz+yz^2=x^3-x^2z-213xz^2-1257z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x33403x83834y^2=x^3-3403x-83834 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([1, -1, 1, -213, -1257])
 
Copy content gp:E = ellinit([1, -1, 1, -213, -1257])
 
Copy content magma:E := EllipticCurve([1, -1, 1, -213, -1257]);
 
Copy content oscar:E = elliptic_curve([1, -1, 1, -213, -1257])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  26 26  = 2132 \cdot 13
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  125497034-125497034 = 12137-1 \cdot 2 \cdot 13^{7}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  1064019559329125497034 -\frac{1064019559329}{125497034}  = 12133137413833-1 \cdot 2^{-1} \cdot 3^{3} \cdot 13^{-7} \cdot 41^{3} \cdot 83^{3}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.289794526103384565196007070020.28979452610338456519600707002
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.289794526103384565196007070020.28979452610338456519600707002
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.06268919648343241.0626891964834324
Szpiro ratio: σm\sigma_{m} ≈ 8.5567038636722938.556703863672293

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 0.620965349549055466375862672700.62096534954905546637586267270
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.620965349549055466375862672700.62096534954905546637586267270
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

0.620965350L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.6209651.0000001120.620965350\begin{aligned} 0.620965350 \approx L(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.620965 \cdot 1.000000 \cdot 1}{1^2} \\ & \approx 0.620965350\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([1, -1, 1, -213, -1257]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([1, -1, 1, -213, -1257]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   26.2.a.b

q+q23q3+q4q53q6+q7+q8+6q9q102q113q12q13+q14+3q15+q163q17+6q18+6q19+O(q20) q + q^{2} - 3 q^{3} + q^{4} - q^{5} - 3 q^{6} + q^{7} + q^{8} + 6 q^{9} - q^{10} - 2 q^{11} - 3 q^{12} - q^{13} + q^{14} + 3 q^{15} + q^{16} - 3 q^{17} + 6 q^{18} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 14
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I1I_{1} split multiplicative -1 1 1 1
1313 11 I7I_{7} nonsplit multiplicative 1 1 7 7

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
77 7B.1.3 7.48.0.5

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[8, 5, 91, 57], [185, 528, 350, 561], [1, 14, 0, 1], [1, 0, 14, 1], [120, 7, 441, 722], [8, 7, 357, 722], [715, 14, 714, 15], [8, 7, 175, 722]] GL(2,Integers(728)).subgroup(gens)
 
Copy content magma:Gens := [[8, 5, 91, 57], [185, 528, 350, 561], [1, 14, 0, 1], [1, 0, 14, 1], [120, 7, 441, 722], [8, 7, 357, 722], [715, 14, 714, 15], [8, 7, 175, 722]]; sub<GL(2,Integers(728))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 728=23713 728 = 2^{3} \cdot 7 \cdot 13 , index 9696, genus 22, and generators

(859157),(185528350561),(11401),(10141),(1207441722),(87357722),(7151471415),(87175722)\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 185 & 528 \\ 350 & 561 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 120 & 7 \\ 441 & 722 \end{array}\right),\left(\begin{array}{rr} 8 & 7 \\ 357 & 722 \end{array}\right),\left(\begin{array}{rr} 715 & 14 \\ 714 & 15 \end{array}\right),\left(\begin{array}{rr} 8 & 7 \\ 175 & 722 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[728])K:=\Q(E[728]) is a degree-845365248845365248 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/728Z)\GL_2(\Z/728\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 13 13
77 good 22 2 2
1313 nonsplit multiplicative 1414 2 2

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 7.
Its isogeny class 26.b consists of 2 curves linked by isogenies of degree 7.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.104.1 Z/2Z\Z/2\Z not in database
66 6.0.1124864.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 Q(ζ7)\Q(\zeta_{7}) Z/7Z\Z/7\Z not in database
77 7.1.52706752.1 Z/7Z\Z/7\Z not in database
88 8.2.999406512.1 Z/3Z\Z/3\Z not in database
1212 12.2.8421963387109376.7 Z/4Z\Z/4\Z not in database
1818 18.0.6007179870010464504905728.1 Z/14Z\Z/14\Z not in database
2121 21.1.301059380309170415238823998755176448.1 Z/14Z\Z/14\Z not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

pp 2 3 5 7 13
Reduction type split ss ord ord nonsplit
λ\lambda-invariant(s) 1 0,0 0 4 0
μ\mu-invariant(s) 0 0,0 0 1 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p11p\ge 11 of good reduction are zero.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.