Properties

Label 2890.l2
Conductor 28902890
Discriminant 201236480-201236480
j-invariant 6069845740960 -\frac{60698457}{40960}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x2139x+965y^2+xy=x^3-x^2-139x+965 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z139xz2+965z3y^2z+xyz=x^3-x^2z-139xz^2+965z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x32227x+59534y^2=x^3-2227x+59534 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([1, -1, 0, -139, 965])
 
Copy content gp:E = ellinit([1, -1, 0, -139, 965])
 
Copy content magma:E := EllipticCurve([1, -1, 0, -139, 965]);
 
Copy content oscar:E = elliptic_curve([1, -1, 0, -139, 965])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  2890 2890  = 251722 \cdot 5 \cdot 17^{2}
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  201236480-201236480 = 12135173-1 \cdot 2^{13} \cdot 5 \cdot 17^{3}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  6069845740960 -\frac{60698457}{40960}  = 121333511313-1 \cdot 2^{-13} \cdot 3^{3} \cdot 5^{-1} \cdot 131^{3}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.293928506337024783191203075700.29392850633702478319120307570
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.41437482967702923687118057877-0.41437482967702923687118057877
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.97803471497000160.9780347149700016
Szpiro ratio: σm\sigma_{m} ≈ 3.41246641762612323.4124664176261232

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 1.64673918662502806605480043041.6467391866250280660548004304
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 112 1\cdot1\cdot2
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 3.29347837325005613210960086073.2934783732500561321096008607
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

3.293478373L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.6467391.0000002123.293478373\begin{aligned} 3.293478373 \approx L(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.646739 \cdot 1.000000 \cdot 2}{1^2} \\ & \approx 3.293478373\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([1, -1, 0, -139, 965]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([1, -1, 0, -139, 965]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   2890.2.a.l

qq2+3q3+q4+q53q6+4q7q8+6q9q102q11+3q12+q134q14+3q15+q166q187q19+O(q20) q - q^{2} + 3 q^{3} + q^{4} + q^{5} - 3 q^{6} + 4 q^{7} - q^{8} + 6 q^{9} - q^{10} - 2 q^{11} + 3 q^{12} + q^{13} - 4 q^{14} + 3 q^{15} + q^{16} - 6 q^{18} - 7 q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2496
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I13I_{13} nonsplit multiplicative 1 1 13 13
55 11 I1I_{1} split multiplicative -1 1 1 1
1717 22 IIIIII additive 1 2 3 0

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
1313 13B.5.1 13.42.0.1

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[14, 23, 871, 1431], [4434, 13, 2197, 8828], [3658, 13, 3471, 8718], [5318, 13, 7059, 8828], [8815, 26, 8814, 27], [1, 0, 26, 1], [14, 13, 4407, 8828], [1, 26, 0, 1], [6631, 4446, 0, 4591]] GL(2,Integers(8840)).subgroup(gens)
 
Copy content magma:Gens := [[14, 23, 871, 1431], [4434, 13, 2197, 8828], [3658, 13, 3471, 8718], [5318, 13, 7059, 8828], [8815, 26, 8814, 27], [1, 0, 26, 1], [14, 13, 4407, 8828], [1, 26, 0, 1], [6631, 4446, 0, 4591]]; sub<GL(2,Integers(8840))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 8840=2351317 8840 = 2^{3} \cdot 5 \cdot 13 \cdot 17 , index 336336, genus 99, and generators

(14238711431),(44341321978828),(36581334718718),(53181370598828),(881526881427),(10261),(141344078828),(12601),(6631444604591)\left(\begin{array}{rr} 14 & 23 \\ 871 & 1431 \end{array}\right),\left(\begin{array}{rr} 4434 & 13 \\ 2197 & 8828 \end{array}\right),\left(\begin{array}{rr} 3658 & 13 \\ 3471 & 8718 \end{array}\right),\left(\begin{array}{rr} 5318 & 13 \\ 7059 & 8828 \end{array}\right),\left(\begin{array}{rr} 8815 & 26 \\ 8814 & 27 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 26 & 1 \end{array}\right),\left(\begin{array}{rr} 14 & 13 \\ 4407 & 8828 \end{array}\right),\left(\begin{array}{rr} 1 & 26 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6631 & 4446 \\ 0 & 4591 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[8840])K:=\Q(E[8840]) is a degree-45049341542404504934154240 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/8840Z)\GL_2(\Z/8840\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 85=517 85 = 5 \cdot 17
55 split multiplicative 66 578=2172 578 = 2 \cdot 17^{2}
1313 good 22 1445=5172 1445 = 5 \cdot 17^{2}
1717 additive 8282 10=25 10 = 2 \cdot 5

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 13.
Its isogeny class 2890.l consists of 2 curves linked by isogenies of degree 13.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.680.1 Z/2Z\Z/2\Z not in database
44 4.4.4913.1 Z/13Z\Z/13\Z not in database
66 6.0.314432000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/26Z\Z/26\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit ss split ord ord ord add ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) 5 0,0 1 0 0 2 - 0 0 0 0 0 0 0 0
μ\mu-invariant(s) 0 0,0 0 0 0 0 - 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.