Properties

Label 324.d2
Conductor 324324
Discriminant 186624-186624
j-invariant 432 432
CM no
Rank 00
Torsion structure Z/3Z\Z/{3}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+9x18y^2=x^3+9x-18 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+9xz218z3y^2z=x^3+9xz^2-18z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+9x18y^2=x^3+9x-18 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([0, 0, 0, 9, -18])
 
Copy content gp:E = ellinit([0, 0, 0, 9, -18])
 
Copy content magma:E := EllipticCurve([0, 0, 0, 9, -18]);
 
Copy content oscar:E = elliptic_curve([0, 0, 0, 9, -18])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/3Z\Z/{3}\Z

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(3,6)(3, 6)0033

Integral points

(3,±6)(3,\pm 6) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: NN  =  324 324  = 22342^{2} \cdot 3^{4}
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  186624-186624 = 12836-1 \cdot 2^{8} \cdot 3^{6}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  432 432  = 24332^{4} \cdot 3^{3}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.30455901738666521857413475594-0.30455901738666521857413475594
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.3159632820940169372165787887-1.3159632820940169372165787887
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.77370561446908310.7737056144690831
Szpiro ratio: σm\sigma_{m} ≈ 3.33934363298846033.3393436329884603

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 1.65417645093995846408576070231.6541764509399584640857607023
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 9 9  = 33 3\cdot3
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 33
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.65417645093995846408576070231.6541764509399584640857607023
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

1.654176451L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.6541761.0000009321.654176451\begin{aligned} 1.654176451 \approx L(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.654176 \cdot 1.000000 \cdot 9}{3^2} \\ & \approx 1.654176451\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([0, 0, 0, 9, -18]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([0, 0, 0, 9, -18]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   324.2.a.d

q+3q5+2q76q11+5q133q17+2q19+O(q20) q + 3 q^{5} + 2 q^{7} - 6 q^{11} + 5 q^{13} - 3 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 36
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 33 IVIV^{*} additive -1 2 8 0
33 33 IVIV additive 1 4 6 0

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2G 4.2.0.1
33 3B.1.1 3.8.0.1
55 5S4 5.5.0.1

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[1, 0, 60, 1], [61, 66, 78, 49], [88, 69, 27, 103], [61, 60, 60, 61], [109, 42, 66, 97], [81, 100, 10, 81], [1, 60, 0, 1], [61, 105, 0, 91], [61, 60, 90, 1], [101, 20, 100, 21], [1, 12, 0, 97]] GL(2,Integers(120)).subgroup(gens)
 
Copy content magma:Gens := [[1, 0, 60, 1], [61, 66, 78, 49], [88, 69, 27, 103], [61, 60, 60, 61], [109, 42, 66, 97], [81, 100, 10, 81], [1, 60, 0, 1], [61, 105, 0, 91], [61, 60, 90, 1], [101, 20, 100, 21], [1, 12, 0, 97]]; sub<GL(2,Integers(120))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 120=2335 120 = 2^{3} \cdot 3 \cdot 5 , index 160160, genus 44, and generators

(10601),(61667849),(886927103),(61606061),(109426697),(811001081),(16001),(61105091),(6160901),(1012010021),(112097)\left(\begin{array}{rr} 1 & 0 \\ 60 & 1 \end{array}\right),\left(\begin{array}{rr} 61 & 66 \\ 78 & 49 \end{array}\right),\left(\begin{array}{rr} 88 & 69 \\ 27 & 103 \end{array}\right),\left(\begin{array}{rr} 61 & 60 \\ 60 & 61 \end{array}\right),\left(\begin{array}{rr} 109 & 42 \\ 66 & 97 \end{array}\right),\left(\begin{array}{rr} 81 & 100 \\ 10 & 81 \end{array}\right),\left(\begin{array}{rr} 1 & 60 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 61 & 105 \\ 0 & 91 \end{array}\right),\left(\begin{array}{rr} 61 & 60 \\ 90 & 1 \end{array}\right),\left(\begin{array}{rr} 101 & 20 \\ 100 & 21 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 97 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[120])K:=\Q(E[120]) is a degree-221184221184 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/120Z)\GL_2(\Z/120\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 81=34 81 = 3^{4}
33 additive 66 2 2

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 324.d consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 324.b2, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/3Z\cong \Z/{3}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.324.1 Z/6Z\Z/6\Z not in database
66 6.0.419904.2 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.0.34992.1 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
99 9.3.669462604992.3 Z/9Z\Z/9\Z not in database
1212 12.2.1624959306694656.2 Z/12Z\Z/12\Z not in database
1818 18.0.647677499181836009472.1 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

pp 2 3
Reduction type add add
λ\lambda-invariant(s) - -
μ\mu-invariant(s) - -

All Iwasawa λ\lambda and μ\mu-invariants for primes p5p\ge 5 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.