sage: E = EllipticCurve([1, -1, 1, -5, 2])
gp: E = ellinit([1, -1, 1, -5, 2])
magma: E := EllipticCurve([1, -1, 1, -5, 2]);
oscar: E = elliptic_curve([1, -1, 1, -5, 2])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z \Z Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 0 , 1 ) (0, 1) ( 0 , 1 ) 0.13195536445710987193842434380 0.13195536445710987193842434380 0 . 1 3 1 9 5 5 3 6 4 4 5 7 1 0 9 8 7 1 9 3 8 4 2 4 3 4 3 8 0 ∞ \infty ∞
( − 2 , 1 ) \left(-2, 1\right) ( − 2 , 1 ) , ( − 2 , 0 ) \left(-2, 0\right) ( − 2 , 0 ) , ( 0 , 1 ) \left(0, 1\right) ( 0 , 1 ) , ( 0 , − 2 ) \left(0, -2\right) ( 0 , − 2 ) , ( 3 , 1 ) \left(3, 1\right) ( 3 , 1 ) , ( 3 , − 5 ) \left(3, -5\right) ( 3 , − 5 ) , ( 115 , 1171 ) \left(115, 1171\right) ( 1 1 5 , 1 1 7 1 ) , ( 115 , − 1287 ) \left(115, -1287\right) ( 1 1 5 , − 1 2 8 7 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
675 675 6 7 5 = 3 3 ⋅ 5 2 3^{3} \cdot 5^{2} 3 3 ⋅ 5 2
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
6075 6075 6 0 7 5 = 3 5 ⋅ 5 2 3^{5} \cdot 5^{2} 3 5 ⋅ 5 2
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
1875 1875 1 8 7 5 = 3 ⋅ 5 4 3 \cdot 5^{4} 3 ⋅ 5 4
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ − 0.58267837373992882073385874477 -0.58267837373992882073385874477 − 0 . 5 8 2 6 7 8 3 7 3 7 3 9 9 2 8 8 2 0 7 3 3 8 5 8 7 4 4 7 7
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 1.3086731460906579212486708157 -1.3086731460906579212486708157 − 1 . 3 0 8 6 7 3 1 4 6 0 9 0 6 5 7 9 2 1 2 4 8 6 7 0 8 1 5 7
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.2039689893561185 1.2039689893561185 1 . 2 0 3 9 6 8 9 8 9 3 5 6 1 1 8 5
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 2.4940932896976444 2.4940932896976444 2 . 4 9 4 0 9 3 2 8 9 6 9 7 6 4 4 4
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.13195536445710987193842434380 0.13195536445710987193842434380 0 . 1 3 1 9 5 5 3 6 4 4 5 7 1 0 9 8 7 1 9 3 8 4 2 4 3 4 3 8 0
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 3.7197181778648167415815549859 3.7197181778648167415815549859 3 . 7 1 9 7 1 8 1 7 7 8 6 4 8 1 6 7 4 1 5 8 1 5 5 4 9 8 5 9
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 3 3 3
= 3 ⋅ 1 3\cdot1 3 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 1.4725103035136656075785106507 1.4725103035136656075785106507 1 . 4 7 2 5 1 0 3 0 3 5 1 3 6 6 5 6 0 7 5 7 8 5 1 0 6 5 0 7
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
1.472510304 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 3.719718 ⋅ 0.131955 ⋅ 3 1 2 ≈ 1.472510304 \begin{aligned} 1.472510304 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 3.719718 \cdot 0.131955 \cdot 3}{1^2} \\ & \approx 1.472510304\end{aligned} 1 . 4 7 2 5 1 0 3 0 4 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 3 . 7 1 9 7 1 8 ⋅ 0 . 1 3 1 9 5 5 ⋅ 3 ≈ 1 . 4 7 2 5 1 0 3 0 4
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, -1, 1, -5, 2]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, -1, 1, -5, 2]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
675.2.a.b
q − q 2 − q 4 + 3 q 8 − 5 q 11 + 5 q 13 − q 16 − 4 q 17 − 2 q 19 + O ( q 20 ) q - q^{2} - q^{4} + 3 q^{8} - 5 q^{11} + 5 q^{13} - q^{16} - 4 q^{17} - 2 q^{19} + O(q^{20}) q − q 2 − q 4 + 3 q 8 − 5 q 1 1 + 5 q 1 3 − q 1 6 − 4 q 1 7 − 2 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 2 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[1, 0, 10, 1], [5, 8, 8, 1], [6, 5, 25, 21], [1, 10, 0, 1], [51, 10, 50, 11], [3, 13, 53, 22], [6, 5, 25, 56], [28, 5, 11, 42]]
GL(2,Integers(60)).subgroup(gens)
magma: Gens := [[1, 0, 10, 1], [5, 8, 8, 1], [6, 5, 25, 21], [1, 10, 0, 1], [51, 10, 50, 11], [3, 13, 53, 22], [6, 5, 25, 56], [28, 5, 11, 42]];
sub<GL(2,Integers(60))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
label 60.40.1.n.1 ,
level 60 = 2 2 ⋅ 3 ⋅ 5 60 = 2^{2} \cdot 3 \cdot 5 6 0 = 2 2 ⋅ 3 ⋅ 5 , index 40 40 4 0 , genus 1 1 1 , and generators
( 1 0 10 1 ) , ( 5 8 8 1 ) , ( 6 5 25 21 ) , ( 1 10 0 1 ) , ( 51 10 50 11 ) , ( 3 13 53 22 ) , ( 6 5 25 56 ) , ( 28 5 11 42 ) \left(\begin{array}{rr}
1 & 0 \\
10 & 1
\end{array}\right),\left(\begin{array}{rr}
5 & 8 \\
8 & 1
\end{array}\right),\left(\begin{array}{rr}
6 & 5 \\
25 & 21
\end{array}\right),\left(\begin{array}{rr}
1 & 10 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
51 & 10 \\
50 & 11
\end{array}\right),\left(\begin{array}{rr}
3 & 13 \\
53 & 22
\end{array}\right),\left(\begin{array}{rr}
6 & 5 \\
25 & 56
\end{array}\right),\left(\begin{array}{rr}
28 & 5 \\
11 & 42
\end{array}\right) ( 1 1 0 0 1 ) , ( 5 8 8 1 ) , ( 6 2 5 5 2 1 ) , ( 1 0 1 0 1 ) , ( 5 1 5 0 1 0 1 1 ) , ( 3 5 3 1 3 2 2 ) , ( 6 2 5 5 5 6 ) , ( 2 8 1 1 5 4 2 ) .
The torsion field K : = Q ( E [ 60 ] ) K:=\Q(E[60]) K : = Q ( E [ 6 0 ] ) is a degree-55296 55296 5 5 2 9 6 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 60 Z ) \GL_2(\Z/60\Z) GL 2 ( Z / 6 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
gp: ellisomat(E)
This curve has no rational isogenies. Its isogeny class 675.b
consists of this curve only.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
3 3 3
3.3.2700.1
Z / 2 Z \Z/2\Z Z / 2 Z
not in database
6 6 6
6.6.87480000.1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
8 8 8
8.2.2767921875.2
Z / 3 Z \Z/3\Z Z / 3 Z
not in database
12 12 1 2
deg 12
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
17
19
23
29
31
37
41
43
47
53
59
61
67
71
79
83
89
97