sage: E = EllipticCurve([0, 0, 1, -2850, -58179])
gp: E = ellinit([0, 0, 1, -2850, -58179])
magma: E := EllipticCurve([0, 0, 1, -2850, -58179]);
oscar: E = elliptic_curve([0, 0, 1, -2850, -58179])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z \Z Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 31 , 19 ) (-31, 19) ( − 3 1 , 1 9 ) 2.4169471473909538693341597666 2.4169471473909538693341597666 2 . 4 1 6 9 4 7 1 4 7 3 9 0 9 5 3 8 6 9 3 3 4 1 5 9 7 6 6 6 ∞ \infty ∞
( − 31 , 19 ) \left(-31, 19\right) ( − 3 1 , 1 9 ) , ( − 31 , − 20 ) \left(-31, -20\right) ( − 3 1 , − 2 0 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
6975 6975 6 9 7 5 = 3 2 ⋅ 5 2 ⋅ 31 3^{2} \cdot 5^{2} \cdot 31 3 2 ⋅ 5 2 ⋅ 3 1
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
19324676925 19324676925 1 9 3 2 4 6 7 6 9 2 5 = 3 3 ⋅ 5 2 ⋅ 3 1 5 3^{3} \cdot 5^{2} \cdot 31^{5} 3 3 ⋅ 5 2 ⋅ 3 1 5
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
3792752640000 28629151 \frac{3792752640000}{28629151} 2 8 6 2 9 1 5 1 3 7 9 2 7 5 2 6 4 0 0 0 0 = 2 15 ⋅ 3 3 ⋅ 5 4 ⋅ 1 9 3 ⋅ 3 1 − 5 2^{15} \cdot 3^{3} \cdot 5^{4} \cdot 19^{3} \cdot 31^{-5} 2 1 5 ⋅ 3 3 ⋅ 5 4 ⋅ 1 9 3 ⋅ 3 1 − 5
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 0.80361152482449032064652316960 0.80361152482449032064652316960 0 . 8 0 3 6 1 1 5 2 4 8 2 4 4 9 0 3 2 0 6 4 6 5 2 3 1 6 9 6 0
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.26071880058511283536425197150 0.26071880058511283536425197150 0 . 2 6 0 7 1 8 8 0 0 5 8 5 1 1 2 8 3 5 3 6 4 2 5 1 9 7 1 5 0
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.1070685424336508 1.1070685424336508 1 . 1 0 7 0 6 8 5 4 2 4 3 3 6 5 0 8
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.0088671919692835 4.0088671919692835 4 . 0 0 8 8 6 7 1 9 1 9 6 9 2 8 3 5
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 2.4169471473909538693341597666 2.4169471473909538693341597666 2 . 4 1 6 9 4 7 1 4 7 3 9 0 9 5 3 8 6 9 3 3 4 1 5 9 7 6 6 6
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 0.65371128099681676355206775969 0.65371128099681676355206775969 0 . 6 5 3 7 1 1 2 8 0 9 9 6 8 1 6 7 6 3 5 5 2 0 6 7 7 5 9 6 9
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 2 2 2
= 2 ⋅ 1 ⋅ 1 2\cdot1\cdot1 2 ⋅ 1 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 3.1599712316450850949640789144 3.1599712316450850949640789144 3 . 1 5 9 9 7 1 2 3 1 6 4 5 0 8 5 0 9 4 9 6 4 0 7 8 9 1 4 4
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
3.159971232 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.653711 ⋅ 2.416947 ⋅ 2 1 2 ≈ 3.159971232 \begin{aligned} 3.159971232 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.653711 \cdot 2.416947 \cdot 2}{1^2} \\ & \approx 3.159971232\end{aligned} 3 . 1 5 9 9 7 1 2 3 2 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 0 . 6 5 3 7 1 1 ⋅ 2 . 4 1 6 9 4 7 ⋅ 2 ≈ 3 . 1 5 9 9 7 1 2 3 2
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, 0, 1, -2850, -58179]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, 0, 1, -2850, -58179]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
6975.2.a.i
q − 2 q 4 − 5 q 11 + 4 q 16 + 5 q 17 − q 19 + O ( q 20 ) q - 2 q^{4} - 5 q^{11} + 4 q^{16} + 5 q^{17} - q^{19} + O(q^{20}) q − 2 q 4 − 5 q 1 1 + 4 q 1 6 + 5 q 1 7 − q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 3 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[3, 10, 631, 37], [921, 10, 920, 11], [871, 10, 635, 51], [1, 0, 10, 1], [4, 5, 15, 19], [1, 10, 0, 1], [1, 289, 93, 94]]
GL(2,Integers(930)).subgroup(gens)
magma: Gens := [[3, 10, 631, 37], [921, 10, 920, 11], [871, 10, 635, 51], [1, 0, 10, 1], [4, 5, 15, 19], [1, 10, 0, 1], [1, 289, 93, 94]];
sub<GL(2,Integers(930))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 930 = 2 ⋅ 3 ⋅ 5 ⋅ 31 930 = 2 \cdot 3 \cdot 5 \cdot 31 9 3 0 = 2 ⋅ 3 ⋅ 5 ⋅ 3 1 , index 120 120 1 2 0 , genus 5 5 5 , and generators
( 3 10 631 37 ) , ( 921 10 920 11 ) , ( 871 10 635 51 ) , ( 1 0 10 1 ) , ( 4 5 15 19 ) , ( 1 10 0 1 ) , ( 1 289 93 94 ) \left(\begin{array}{rr}
3 & 10 \\
631 & 37
\end{array}\right),\left(\begin{array}{rr}
921 & 10 \\
920 & 11
\end{array}\right),\left(\begin{array}{rr}
871 & 10 \\
635 & 51
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
10 & 1
\end{array}\right),\left(\begin{array}{rr}
4 & 5 \\
15 & 19
\end{array}\right),\left(\begin{array}{rr}
1 & 10 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 289 \\
93 & 94
\end{array}\right) ( 3 6 3 1 1 0 3 7 ) , ( 9 2 1 9 2 0 1 0 1 1 ) , ( 8 7 1 6 3 5 1 0 5 1 ) , ( 1 1 0 0 1 ) , ( 4 1 5 5 1 9 ) , ( 1 0 1 0 1 ) , ( 1 9 3 2 8 9 9 4 ) .
The torsion field K : = Q ( E [ 930 ] ) K:=\Q(E[930]) K : = Q ( E [ 9 3 0 ] ) is a degree-1028505600 1028505600 1 0 2 8 5 0 5 6 0 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 930 Z ) \GL_2(\Z/930\Z) GL 2 ( Z / 9 3 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
good
2 2 2
2325 = 3 ⋅ 5 2 ⋅ 31 2325 = 3 \cdot 5^{2} \cdot 31 2 3 2 5 = 3 ⋅ 5 2 ⋅ 3 1
3 3 3
additive
6 6 6
775 = 5 2 ⋅ 31 775 = 5^{2} \cdot 31 7 7 5 = 5 2 ⋅ 3 1
5 5 5
additive
10 10 1 0
9 = 3 2 9 = 3^{2} 9 = 3 2
31 31 3 1
nonsplit multiplicative
32 32 3 2
225 = 3 2 ⋅ 5 2 225 = 3^{2} \cdot 5^{2} 2 2 5 = 3 2 ⋅ 5 2
gp: ellisomat(E)
This curve has no rational isogenies. Its isogeny class 6975.i
consists of this curve only.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
p p p
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
Reduction type
ss
add
add
ss
ord
ss
ord
ord
ord
ord
nonsplit
ord
ss
ord
ss
λ \lambda λ -invariant(s)
1,2
-
-
1,1
1
1,1
1
1
1
1
1
1
1,1
1
1,1
μ \mu μ -invariant(s)
0,0
-
-
0,0
0
0,0
0
0
0
0
0
0
0,0
0
0,0
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
17
23
29
37
41
43
53
61
67
71
73
89
97