Minimal equation
Minimal equation
Simplified equation
| $y^2 + y = x^6 - 2x^3$ | (homogenize, simplify) | 
| $y^2 + z^3y = x^6 - 2x^3z^3$ | (dehomogenize, simplify) | 
| $y^2 = 4x^6 - 8x^3 + 1$ | (homogenize, minimize) | 
Invariants
| Conductor: | \( N \) | \(=\) | \(26244\) | \(=\) | \( 2^{2} \cdot 3^{8} \) |  | 
| Discriminant: | \( \Delta \) | \(=\) | \(314928\) | \(=\) | \( 2^{4} \cdot 3^{9} \) |  | 
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(24\) | \(=\) | \( 2^{3} \cdot 3 \) | 
| \( I_4 \) | \(=\) | \(189\) | \(=\) | \( 3^{3} \cdot 7 \) | 
| \( I_6 \) | \(=\) | \(1107\) | \(=\) | \( 3^{3} \cdot 41 \) | 
| \( I_{10} \) | \(=\) | \(-162\) | \(=\) | \( - 2 \cdot 3^{4} \) | 
| \( J_2 \) | \(=\) | \(72\) | \(=\) | \( 2^{3} \cdot 3^{2} \) | 
| \( J_4 \) | \(=\) | \(-918\) | \(=\) | \( - 2 \cdot 3^{3} \cdot 17 \) | 
| \( J_6 \) | \(=\) | \(-3024\) | \(=\) | \( - 2^{4} \cdot 3^{3} \cdot 7 \) | 
| \( J_8 \) | \(=\) | \(-265113\) | \(=\) | \( - 3^{5} \cdot 1091 \) | 
| \( J_{10} \) | \(=\) | \(-314928\) | \(=\) | \( - 2^{4} \cdot 3^{9} \) | 
| \( g_1 \) | \(=\) | \(-6144\) | ||
| \( g_2 \) | \(=\) | \(1088\) | ||
| \( g_3 \) | \(=\) | \(448/9\) | 
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |  | 
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $D_6$ |  | 
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z/{3}\Z \oplus \Z/{3}\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((1 : -5 : 2) - (1 : -1 : 0)\) | \(z (2x - z)\) | \(=\) | \(0,\) | \(4y\) | \(=\) | \(4x^3 - 3z^3\) | \(0.985564\) | \(\infty\) | 
| \((0 : -1 : 1) - (1 : -1 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 - z^3\) | \(0\) | \(3\) | 
| \(D_0 - 2 \cdot(1 : 1 : 0)\) | \(z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3\) | \(0\) | \(3\) | 
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((1 : -5 : 2) - (1 : -1 : 0)\) | \(z (2x - z)\) | \(=\) | \(0,\) | \(4y\) | \(=\) | \(4x^3 - 3z^3\) | \(0.985564\) | \(\infty\) | 
| \((0 : -1 : 1) - (1 : -1 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 - z^3\) | \(0\) | \(3\) | 
| \(D_0 - 2 \cdot(1 : 1 : 0)\) | \(z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3\) | \(0\) | \(3\) | 
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - 2 \cdot(1 : -2 : 0)\) | \(z (2x - z)\) | \(=\) | \(0,\) | \(4y\) | \(=\) | \(8x^3 - 5z^3\) | \(0.985564\) | \(\infty\) | 
| \((0 : -1 : 1) - (1 : -2 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(2x^3 - z^3\) | \(0\) | \(3\) | 
| \(D_0 - 2 \cdot(1 : 2 : 0)\) | \(z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-2x^3 + z^3\) | \(0\) | \(3\) | 
2-torsion field: 6.2.5038848.1
BSD invariants
| Hasse-Weil conjecture: | unverified | 
| Analytic rank: | \(1\) | 
| Mordell-Weil rank: | \(1\) | 
| 2-Selmer rank: | \(1\) | 
| Regulator: | \( 0.985564 \) | 
| Real period: | \( 12.73964 \) | 
| Tamagawa product: | \( 9 \) | 
| Torsion order: | \( 9 \) | 
| Leading coefficient: | \( 1.395082 \) | 
| Analytic order of Ш: | \( 1 \) (rounded) | 
| Order of Ш: | square | 
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? | 
|---|---|---|---|---|---|---|---|
| \(2\) | \(2\) | \(4\) | \(3\) | \(-1^*\) | \(1 + 2 T^{2}\) | yes | |
| \(3\) | \(8\) | \(9\) | \(3\) | \(1^*\) | \(1\) | no | 
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? | 
|---|---|---|
| \(2\) | 2.20.3 | no | 
| \(3\) | 3.5760.3 | yes | 
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $J(E_3)$ | 
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\) | 
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) 3.1.108.1 with defining polynomial:
  \(x^{3} - 2\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = -108 b^{2}\)
  \(g_6 = 3888\)
   Conductor norm: 729
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = 468 b^{2}\)
  \(g_6 = -20304\)
   Conductor norm: 729
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z\) | 
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) | 
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) | 
Smallest field over which all endomorphisms are defined:
        Galois number field \(K = \Q (a) \simeq \) 6.0.34992.1 with defining polynomial \(x^{6} - 3 x^{5} + 5 x^{3} - 3 x + 1\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):
| \(\End (J_{\overline{\Q}})\) | \(\simeq\) | an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) | 
| \(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) | 
| \(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) | 
Remainder of the endomorphism lattice by field
Over subfield \(F \simeq \) \(\Q(\sqrt{-3}) \) with generator \(2 a^{5} - 5 a^{4} - 2 a^{3} + 8 a^{2} + 4 a - 3\) with minimal polynomial \(x^{2} - x + 1\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{-3}}{2}]\) | 
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) | 
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) | 
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 3.1.108.1 with generator \(2 a^{5} - 5 a^{4} - 3 a^{3} + 10 a^{2} + 5 a - 5\) with minimal polynomial \(x^{3} - 2\):
| \(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) | 
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) | 
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) | 
Of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 3.1.108.1 with generator \(-a^{2} + a + 1\) with minimal polynomial \(x^{3} - 2\):
| \(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) | 
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) | 
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) | 
Of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 3.1.108.1 with generator \(-2 a^{5} + 5 a^{4} + 3 a^{3} - 9 a^{2} - 6 a + 4\) with minimal polynomial \(x^{3} - 2\):
| \(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) | 
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) | 
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) | 
Of \(\GL_2\)-type, not simple
