Properties

Label 128.11
Order 27 2^{7}
Exponent 23 2^{3}
Nilpotent yes
Solvable yes
#Gab\card{G^{\mathrm{ab}}} 25 2^{5}
#Z(G)\card{Z(G)} 24 2^{4}
#Aut(G)\card{\mathrm{Aut}(G)} 210 2^{10}
#Out(G)\card{\mathrm{Out}(G)} 27 2^{7}
Perm deg. 2020
Trans deg. 128128
Rank 22

Related objects

Downloads

Learn more

Show commands: Gap / Magma

Group information

Description:C42.D4C_4^2.D_4
Order: 128128=27\medspace = 2^{7}
Exponent: 88=23\medspace = 2^{3}
Automorphism group:Group of order 10241024=210\medspace = 2^{10} (generators)
Outer automorphisms:C24:D4C_2^4:D_4, of order 128128=27\medspace = 2^{7}
Composition factors:C2C_2 x 7
Nilpotency class:33
Derived length:22

This group is nonabelian, a pp-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Group statistics

Order 1 2 4 8
Elements 1 7 56 64 128
Conjugacy classes   1 7 24 24 56
Divisions 1 7 14 6 28
Autjugacy classes 1 5 10 2 18

Dimension 1 2 4
Irr. complex chars.   32 24 0 56
Irr. rational chars. 4 10 14 28

Minimal presentations

Permutation degree:2020
Transitive degree:128128
Rank: 22
Inequivalent generating pairs: 66

Minimal degrees of faithful linear representations

Over C\mathbb{C} Over R\mathbb{R} Over Q\mathbb{Q}
Irreducible none none none
Arbitrary 4 6 10

Constructions

Show commands: Gap / Magma


Presentation: a,b,ca8=b4=c4=[a,c]=1,ba=bc,cb=c3\langle a, b, c \mid a^{8}=b^{4}=c^{4}=[a,c]=1, b^{a}=bc, c^{b}=c^{3} \rangle Copy content Toggle raw display
Copy content comment: Define the group with the given generators and relations
 
Copy content magma: G := PCGroup([7, 2, 2, 2, 2, 2, 2, 2, 14, 36, 1123, 1018, 80, 530, 124]); a,b,c := Explode([G.1, G.4, G.6]); AssignNames(~G, ["a", "a2", "a4", "b", "b2", "c", "c2"]);
 
Copy content gap: G := PcGroupCode(594979844521417777451,128); a := G.1; b := G.4; c := G.6;
 
Permutation group:Degree 2020 (1,2,5,6)(3,4,7,8)(13,14,16,19,17,15,18,20),(1,3,4,6,5,7,8,2)(9,10,11,12) ⁣ ⁣\langle(1,2,5,6)(3,4,7,8)(13,14,16,19,17,15,18,20), (1,3,4,6,5,7,8,2)(9,10,11,12) \!\cdots\! \rangle Copy content Toggle raw display
Copy content comment: Define the group as a permutation group
 
Copy content magma: G := PermutationGroup< 20 | (1,2,5,6)(3,4,7,8)(13,14,16,19,17,15,18,20), (1,3,4,6,5,7,8,2)(9,10,11,12)(13,15,16,20,17,14,18,19), (1,4,5,8)(2,3,6,7), (1,5)(2,6)(3,7)(4,8)(13,16,17,18)(14,19,15,20), (1,4,5,8)(2,3,6,7)(9,11)(10,12)(13,16,17,18)(14,19,15,20), (1,5)(2,6)(3,7)(4,8), (13,17)(14,15)(16,18)(19,20) >;
 
Copy content gap: G := Group( (1,2,5,6)(3,4,7,8)(13,14,16,19,17,15,18,20), (1,3,4,6,5,7,8,2)(9,10,11,12)(13,15,16,20,17,14,18,19), (1,4,5,8)(2,3,6,7), (1,5)(2,6)(3,7)(4,8)(13,16,17,18)(14,19,15,20), (1,4,5,8)(2,3,6,7)(9,11)(10,12)(13,16,17,18)(14,19,15,20), (1,5)(2,6)(3,7)(4,8), (13,17)(14,15)(16,18)(19,20) );
 
Matrix group:(3603),(7007),(9009),(1401),(13885),(1801),(5323)GL2(Z/16Z)\left\langle \left(\begin{array}{rr} 3 & 6 \\ 0 & 3 \end{array}\right), \left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 8 \\ 8 & 5 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 5 & 3 \\ 2 & 3 \end{array}\right) \right\rangle \subseteq \GL_{2}(\Z/16\Z)
Copy content comment: Define the group as a matrix group with coefficients in GLZq
 
Copy content magma: G := MatrixGroup< 2, Integers(16) | [[3, 6, 0, 3], [7, 0, 0, 7], [9, 0, 0, 9], [1, 4, 0, 1], [13, 8, 8, 5], [1, 8, 0, 1], [5, 3, 2, 3]] >;
 
Copy content gap: G := Group([[[ZmodnZObj(3,16), ZmodnZObj(6,16)], [ZmodnZObj(0,16), ZmodnZObj(3,16)]],[[ZmodnZObj(7,16), ZmodnZObj(0,16)], [ZmodnZObj(0,16), ZmodnZObj(7,16)]],[[ZmodnZObj(9,16), ZmodnZObj(0,16)], [ZmodnZObj(0,16), ZmodnZObj(9,16)]],[[ZmodnZObj(1,16), ZmodnZObj(4,16)], [ZmodnZObj(0,16), ZmodnZObj(1,16)]],[[ZmodnZObj(13,16), ZmodnZObj(8,16)], [ZmodnZObj(8,16), ZmodnZObj(5,16)]],[[ZmodnZObj(1,16), ZmodnZObj(8,16)], [ZmodnZObj(0,16), ZmodnZObj(1,16)]],[[ZmodnZObj(5,16), ZmodnZObj(3,16)], [ZmodnZObj(2,16), ZmodnZObj(3,16)]]]);
 
(11201),(130013),(591211),(5005),(13885),(1601),(3281)GL2(Z/24Z)\left\langle \left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 5 & 9 \\ 12 & 11 \end{array}\right), \left(\begin{array}{rr} 5 & 0 \\ 0 & 5 \end{array}\right), \left(\begin{array}{rr} 13 & 8 \\ 8 & 5 \end{array}\right), \left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 3 & 2 \\ 8 & 1 \end{array}\right) \right\rangle \subseteq \GL_{2}(\Z/24\Z)
Copy content comment: Define the group as a matrix group with coefficients in GLZN
 
Copy content magma: G := MatrixGroup< 2, Integers(24) | [[1, 12, 0, 1], [13, 0, 0, 13], [5, 9, 12, 11], [5, 0, 0, 5], [13, 8, 8, 5], [1, 6, 0, 1], [3, 2, 8, 1]] >;
 
Copy content gap: G := Group([[[ZmodnZObj(1,24), ZmodnZObj(12,24)], [ZmodnZObj(0,24), ZmodnZObj(1,24)]],[[ZmodnZObj(13,24), ZmodnZObj(0,24)], [ZmodnZObj(0,24), ZmodnZObj(13,24)]],[[ZmodnZObj(5,24), ZmodnZObj(9,24)], [ZmodnZObj(12,24), ZmodnZObj(11,24)]],[[ZmodnZObj(5,24), ZmodnZObj(0,24)], [ZmodnZObj(0,24), ZmodnZObj(5,24)]],[[ZmodnZObj(13,24), ZmodnZObj(8,24)], [ZmodnZObj(8,24), ZmodnZObj(5,24)]],[[ZmodnZObj(1,24), ZmodnZObj(6,24)], [ZmodnZObj(0,24), ZmodnZObj(1,24)]],[[ZmodnZObj(3,24), ZmodnZObj(2,24)], [ZmodnZObj(8,24), ZmodnZObj(1,24)]]]);
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: (C4×C8)(C_4\times C_8) \,\rtimes\, C4C_4 (2) (C4:C8)(C_4:C_8) \,\rtimes\, C4C_4 (2) (C4:C4)(C_4:C_4) \,\rtimes\, C8C_8 (4) more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: C42C_4^2 . Q8Q_8 C42C_4^2 . D4D_4 C4C_4 . (Q8:C4)(Q_8:C_4) C2C_2 . (Q8:C8)(Q_8:C_8) (2) all 36

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: C4×C8C_{4} \times C_{8}
Schur multiplier: C23C_{2}^{3}
Commutator length: 11

Subgroups

There are 176 subgroups in 104 conjugacy classes, 60 normal (36 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: ZZ \simeq C22×C4C_2^2\times C_4 G/ZG/Z \simeq D4D_4
Commutator: GG' \simeq C4C_4 G/GG/G' \simeq C4×C8C_4\times C_8
Frattini: Φ\Phi \simeq C2×C42C_2\times C_4^2 G/ΦG/\Phi \simeq C22C_2^2
Fitting: Fit\operatorname{Fit} \simeq C42.D4C_4^2.D_4 G/FitG/\operatorname{Fit} \simeq C1C_1
Radical: RR \simeq C42.D4C_4^2.D_4 G/RG/R \simeq C1C_1
Socle: soc\operatorname{soc} \simeq C23C_2^3 G/socG/\operatorname{soc} \simeq C22:C4C_2^2:C_4
2-Sylow subgroup: P2P_{ 2 } \simeq C42.D4C_4^2.D_4

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series C42.D4C_4^2.D_4 \rhd C4C_4 \rhd C1C_1
Chief series C42.D4C_4^2.D_4 \rhd C4:C42C_4:C_4^2 \rhd C2×C42C_2\times C_4^2 \rhd C22×C4C_2^2\times C_4 \rhd C2×C4C_2\times C_4 \rhd C22C_2^2 \rhd C2C_2 \rhd C1C_1
Lower central series C42.D4C_4^2.D_4 \rhd C4C_4 \rhd C2C_2 \rhd C1C_1
Upper central series C1C_1 \lhd C22×C4C_2^2\times C_4 \lhd C2×C42C_2\times C_4^2 \lhd C42.D4C_4^2.D_4

Supergroups

This group is a maximal subgroup of 284 larger groups in the database.

This group is a maximal quotient of 28 larger groups in the database.

Character theory

Complex character table

See the 56×5656 \times 56 character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the 28×2828 \times 28 rational character table.