Properties

Label 2016.b
Order 25327 2^{5} \cdot 3^{2} \cdot 7
Exponent 2337 2^{3} \cdot 3 \cdot 7
Nilpotent no
Solvable no
#Gab\card{G^{\mathrm{ab}}} 223 2^{2} \cdot 3
#Z(G)\card{Z(G)} 23 2 \cdot 3
#Aut(G)\card{\mathrm{Aut}(G)} 2637 2^{6} \cdot 3 \cdot 7
#Out(G)\card{\mathrm{Out}(G)} 22 2^{2}
Perm deg. 1313
Trans deg. 4848
Rank 22

Related objects

Downloads

Learn more

Show commands: Gap / Magma

Group information

Description:C6×PGL(2,7)C_6\times \PGL(2,7)
Order: 20162016=25327\medspace = 2^{5} \cdot 3^{2} \cdot 7
Exponent: 168168=2337\medspace = 2^{3} \cdot 3 \cdot 7
Automorphism group:C22×PGL(2,7)C_2^2\times \PGL(2,7), of order 13441344=2637\medspace = 2^{6} \cdot 3 \cdot 7 (generators)
Outer automorphisms:C22C_2^2, of order 44=22\medspace = 2^{2}
Composition factors:C2C_2 x 2, C3C_3, GL(3,2)\GL(3,2)
Derived length:11

This group is nonabelian and nonsolvable.

Group statistics

Order 1 2 3 4 6 7 8 12 14 21 24 42
Elements 1 99 170 84 702 48 168 168 48 96 336 96 2016
Conjugacy classes   1 5 5 2 19 1 4 4 1 2 8 2 54
Divisions 1 5 3 2 11 1 2 2 1 1 2 1 32
Autjugacy classes 1 4 3 2 8 1 2 2 1 1 2 1 28

Dimension 1 2 6 7 8 12 14 16 24
Irr. complex chars.   12 0 18 12 12 0 0 0 0 54
Irr. rational chars. 4 4 2 4 4 4 4 4 2 32

Minimal presentations

Permutation degree:1313
Transitive degree:4848
Rank: 22
Inequivalent generating pairs: 828828

Minimal degrees of faithful linear representations

Over C\mathbb{C} Over R\mathbb{R} Over Q\mathbb{Q}
Irreducible 6 12 12
Arbitrary 6 8 8

Constructions

Show commands: Gap / Magma


Groups of Lie type:CO(3,7)\CO(3,7)
Permutation group:Degree 1313 (9,10,11)(12,13),(1,2,4,5,3,6),(2,4,5)(6,7,8),(1,3)(2,5)(7,8)(12,13)\langle(9,10,11)(12,13), (1,2,4,5,3,6), (2,4,5)(6,7,8), (1,3)(2,5)(7,8)(12,13)\rangle Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 13 | (9,10,11)(12,13), (1,2,4,5,3,6), (2,4,5)(6,7,8), (1,3)(2,5)(7,8)(12,13) >;
 
Copy content gap:G := Group( (9,10,11)(12,13), (1,2,4,5,3,6), (2,4,5)(6,7,8), (1,3)(2,5)(7,8)(12,13) );
 
Direct product: C2C_2 ×\, \times\, C3C_3 ×\, \times\, PGL(2,7)\PGL(2,7)
Semidirect product: (C6×GL(3,2))(C_6\times \GL(3,2)) \,\rtimes\, C2C_2 (C2×GL(3,2))(C_2\times \GL(3,2)) \,\rtimes\, C6C_6 GL(3,2)\GL(3,2) \,\rtimes\, (C2×C6)(C_2\times C_6) (C3×GL(3,2))(C_3\times \GL(3,2)) \,\rtimes\, C22C_2^2 more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Aut. group: Aut(C7×GL(3,2))\Aut(C_7\times \GL(3,2)) Aut(C9×GL(3,2))\Aut(C_9\times \GL(3,2)) Aut(C7×SL(2,7))\Aut(C_7\times \SL(2,7)) Aut(C7×PGL(2,7))\Aut(C_7\times \PGL(2,7)) all 7

Elements of the group are displayed as matrices in CO(3,7)\CO(3,7).

Homology

Abelianization: C2×C6C22×C3C_{2} \times C_{6} \simeq C_{2}^{2} \times C_{3}
Schur multiplier: C22C_{2}^{2}
Commutator length: 11

Subgroups

There are 3362 subgroups in 157 conjugacy classes, 14 normal (10 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: ZZ \simeq C6C_6 G/ZG/Z \simeq PGL(2,7)\PGL(2,7)
Commutator: GG' \simeq GL(3,2)\GL(3,2) G/GG/G' \simeq C2×C6C_2\times C_6
Frattini: Φ\Phi \simeq C1C_1 G/ΦG/\Phi \simeq C6×PGL(2,7)C_6\times \PGL(2,7)
Fitting: Fit\operatorname{Fit} \simeq C6C_6 G/FitG/\operatorname{Fit} \simeq PGL(2,7)\PGL(2,7)
Radical: RR \simeq C6C_6 G/RG/R \simeq PGL(2,7)\PGL(2,7)
Socle: soc\operatorname{soc} \simeq C6×GL(3,2)C_6\times \GL(3,2) G/socG/\operatorname{soc} \simeq C2C_2
2-Sylow subgroup: P2P_{ 2 } \simeq C2×D8C_2\times D_8
3-Sylow subgroup: P3P_{ 3 } \simeq C32C_3^2
7-Sylow subgroup: P7P_{ 7 } \simeq C7C_7

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series C6×PGL(2,7)C_6\times \PGL(2,7) \rhd GL(3,2)\GL(3,2)
Chief series C6×PGL(2,7)C_6\times \PGL(2,7) \rhd C6×GL(3,2)C_6\times \GL(3,2) \rhd C6C_6 \rhd C3C_3 \rhd C1C_1
Lower central series C6×PGL(2,7)C_6\times \PGL(2,7) \rhd GL(3,2)\GL(3,2)
Upper central series C1C_1 \lhd C6C_6

Supergroups

This group is a maximal subgroup of 12 larger groups in the database.

This group is a maximal quotient of 12 larger groups in the database.

Character theory

Complex character table

See the 54×5454 \times 54 character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the 32×3232 \times 32 rational character table.