Properties

Label 384.32
Order 273 2^{7} \cdot 3
Exponent 233 2^{3} \cdot 3
Nilpotent no
Solvable yes
#Gab\card{G^{\mathrm{ab}}} 23 2^{3}
#Z(G)\card{Z(G)} 22 2^{2}
#Aut(G)\card{\Aut(G)} 2103 2^{10} \cdot 3
#Out(G)\card{\mathrm{Out}(G)} 25 2^{5}
Perm deg. 1919
Trans deg. 9696
Rank 22

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := SmallGroup(384, 32);
 
Copy content gap:G := SmallGroup(384, 32);
 
Copy content sage_gap:G = gap.SmallGroup(384, 32)
 
Copy content comment:Define the group as a permutation group
 
Copy content sage:G = PermutationGroup(['(1,2,5,7,3,8,4,6)(9,10)(11,13)(12,15)(14,16)(18,19)', '(1,3)(2,6)(4,5)(7,8)(10,13)(11,16)(14,15)(18,19)', '(1,4)(2,7)(3,5)(6,8)(9,11,12,16)(10,14,15,13)', '(1,5,3,4)(2,7,8,6)', '(2,8)(6,7)(9,12)(10,15)(11,16)(13,14)', '(9,12)(10,15)(11,16)(13,14)', '(1,3)(2,8)(4,5)(6,7)', '(17,18,19)'])
 

Group information

Description:(C2×C4).D24(C_2\times C_4).D_{24}
Order: 384384=273\medspace = 2^{7} \cdot 3
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: 2424=233\medspace = 2^{3} \cdot 3
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:C3:(C25.C25)C_3:(C_2^5.C_2^5), of order 30723072=2103\medspace = 2^{10} \cdot 3
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:C2C_2 x 7, C3C_3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:22
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for p=2p = 2, and metabelian.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 24
Elements 1 55 2 72 14 128 48 64 384
Conjugacy classes   1 7 1 7 5 8 8 8 45
Divisions 1 7 1 5 5 3 4 1 27
Autjugacy classes 1 6 1 5 5 2 4 1 25

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 8
Irr. complex chars.   8 26 9 2 45
Irr. rational chars. 4 6 10 7 27

Minimal presentations

Permutation degree:1919
Transitive degree:9696
Rank: 22
Inequivalent generating pairs: 1212

Minimal degrees of faithful linear representations

Over C\mathbb{C} Over R\mathbb{R} Over Q\mathbb{Q}
Irreducible none none none
Arbitrary 6 6 10

Constructions

Show commands: Gap / Magma / SageMath


Presentation: a,b,c,da2=b8=c2=d12=[a,c]=[c,d]=1,ba=b7cd9,da=cd11,cb=cd6,db=cd\langle a, b, c, d \mid a^{2}=b^{8}=c^{2}=d^{12}=[a,c]=[c,d]=1, b^{a}=b^{7}cd^{9}, d^{a}=cd^{11}, c^{b}=cd^{6}, d^{b}=cd \rangle Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([8, -2, -2, -2, -2, -2, 2, -2, -3, 5089, 41, 5282, 66, 4172, 17669, 1165, 2709, 141, 17926, 166, 16391]); a,b,c,d := Explode([G.1, G.2, G.5, G.6]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "d4"]);
 
Copy content gap:G := PcGroupCode(949239797249393759469380714243166536590849,384); a := G.1; b := G.2; c := G.5; d := G.6;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(949239797249393759469380714243166536590849,384)'); a = G.1; b = G.2; c = G.5; d = G.6;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(949239797249393759469380714243166536590849,384)'); a = G.1; b = G.2; c = G.5; d = G.6;
 
Permutation group:Degree 1919 (1,2,5,7,3,8,4,6)(9,10)(11,13)(12,15)(14,16)(18,19),(1,3)(2,6)(4,5)(7,8) ⁣ ⁣\langle(1,2,5,7,3,8,4,6)(9,10)(11,13)(12,15)(14,16)(18,19), (1,3)(2,6)(4,5)(7,8) \!\cdots\! \rangle Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 19 | (1,2,5,7,3,8,4,6)(9,10)(11,13)(12,15)(14,16)(18,19), (1,3)(2,6)(4,5)(7,8)(10,13)(11,16)(14,15)(18,19), (1,4)(2,7)(3,5)(6,8)(9,11,12,16)(10,14,15,13), (1,5,3,4)(2,7,8,6), (2,8)(6,7)(9,12)(10,15)(11,16)(13,14), (9,12)(10,15)(11,16)(13,14), (1,3)(2,8)(4,5)(6,7), (17,18,19) >;
 
Copy content gap:G := Group( (1,2,5,7,3,8,4,6)(9,10)(11,13)(12,15)(14,16)(18,19), (1,3)(2,6)(4,5)(7,8)(10,13)(11,16)(14,15)(18,19), (1,4)(2,7)(3,5)(6,8)(9,11,12,16)(10,14,15,13), (1,5,3,4)(2,7,8,6), (2,8)(6,7)(9,12)(10,15)(11,16)(13,14), (9,12)(10,15)(11,16)(13,14), (1,3)(2,8)(4,5)(6,7), (17,18,19) );
 
Copy content sage:G = PermutationGroup(['(1,2,5,7,3,8,4,6)(9,10)(11,13)(12,15)(14,16)(18,19)', '(1,3)(2,6)(4,5)(7,8)(10,13)(11,16)(14,15)(18,19)', '(1,4)(2,7)(3,5)(6,8)(9,11,12,16)(10,14,15,13)', '(1,5,3,4)(2,7,8,6)', '(2,8)(6,7)(9,12)(10,15)(11,16)(13,14)', '(9,12)(10,15)(11,16)(13,14)', '(1,3)(2,8)(4,5)(6,7)', '(17,18,19)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: (C22.OD16)(C_2^2.\OD_{16}) \,\rtimes\, S3S_3 C3C_3 \,\rtimes\, ((C2×C4).D8)((C_2\times C_4).D_8) ((C2×C4).D12)((C_2\times C_4).D_{12}) \,\rtimes\, C2C_2 ((C2×C4):C24)((C_2\times C_4):C_{24}) \,\rtimes\, C2C_2 more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: (C2×C12)(C_2\times C_{12}) . D8D_8 (C2×C4)(C_2\times C_4) . D24D_{24} C6C_6 . (C2C4)(C_2\wr C_4) (C22.D4)(C_2^2.D_4) . D6D_6 all 28

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: C2×C4C_{2} \times C_{4}
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: C22C_{2}^{2}
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: 11
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 934 subgroups in 168 conjugacy classes, 35 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: ZZ \simeq C22C_2^2 G/ZG/Z \simeq C22.D12C_2^2.D_{12}
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: GG' \simeq C22×C12C_2^2\times C_{12} G/GG/G' \simeq C2×C4C_2\times C_4
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: Φ\Phi \simeq C22.D4C_2^2.D_4 G/ΦG/\Phi \simeq D6D_6
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: Fit\operatorname{Fit} \simeq (C2×C4):C24(C_2\times C_4):C_{24} G/FitG/\operatorname{Fit} \simeq C2C_2
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: RR \simeq (C2×C4).D24(C_2\times C_4).D_{24} G/RG/R \simeq C1C_1
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: soc\operatorname{soc} \simeq C2×C6C_2\times C_6 G/socG/\operatorname{soc} \simeq C23:C4C_2^3:C_4
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: P2P_{ 2 } \simeq (C2×C4).D8(C_2\times C_4).D_8
3-Sylow subgroup: P3P_{ 3 } \simeq C3C_3

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series (C2×C4).D24(C_2\times C_4).D_{24} \rhd C22×C12C_2^2\times C_{12} \rhd C1C_1
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series (C2×C4).D24(C_2\times C_4).D_{24} \rhd (C2×C4):D12(C_2\times C_4):D_{12} \rhd C2×C4:C12C_2\times C_4:C_{12} \rhd C22×C12C_2^2\times C_{12} \rhd C22×C6C_2^2\times C_6 \rhd C2×C6C_2\times C_6 \rhd C6C_6 \rhd C3C_3 \rhd C1C_1
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series (C2×C4).D24(C_2\times C_4).D_{24} \rhd C22×C12C_2^2\times C_{12} \rhd C22×C6C_2^2\times C_6 \rhd C6C_6 \rhd C3C_3
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series C1C_1 \lhd C22C_2^2 \lhd C23C_2^3 \lhd C22.D4C_2^2.D_4 \lhd C22.OD16C_2^2.\OD_{16}
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the 45×4545 \times 45 character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the 27×2727 \times 27 rational character table.