Properties

Label 384.39
Order \( 2^{7} \cdot 3 \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \)
$\card{\mathrm{Aut}(G)}$ \( 2^{9} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $19$
Trans deg. $48$
Rank $2$

Related objects

Downloads

Learn more

Group information

Description:$(C_4\times C_{12}).D_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism group:$C_2\wr D_4\times D_6$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) (generators)
Outer automorphisms:$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Composition factors:$C_2$ x 7, $C_3$
Derived length:$3$

This group is nonabelian, supersolvable (hence solvable and monomial), and hyperelementary for $p = 2$.

Group statistics

Order 1 2 3 4 6 8 12 24
Elements 1 27 2 52 6 176 56 64 384
Conjugacy classes   1 3 1 6 3 7 7 8 36
Divisions 1 3 1 6 2 3 5 1 22
Autjugacy classes 1 3 1 6 2 3 5 1 22

Dimension 1 2 4 8 16
Irr. complex chars.   8 10 17 1 0 36
Irr. rational chars. 4 6 6 4 2 22

Minimal Presentations

Permutation degree:$19$
Transitive degree:$48$
Rank: $2$
Inequivalent generating pairs: $24$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 4 8 16
Arbitrary 4 8 10

Constructions

Presentation: $\langle a, b, c, d \mid a^{2}=c^{12}=d^{4}=[a,d]=[c,d]=1, b^{4}=d^{2}, b^{a}=b^{3}c^{3}d, c^{a}=c^{11}d, c^{b}=c^{5}d^{3}, d^{b}=c^{6}d^{3} \rangle$ Copy content Toggle raw display
Permutation group:Degree $19$ $\langle(1,2,3,7,5,9,12,16)(4,8,14,6,15,13,11,10)(18,19), (1,2)(3,10)(4,13)(5,9) \!\cdots\! \rangle$ Copy content Toggle raw display
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $(C_4.Q_{16})$ $\,\rtimes\,$ $S_3$ $(C_{12}.Q_{16})$ $\,\rtimes\,$ $C_2$ $C_3$ $\,\rtimes\,$ $(C_4^2.D_4)$ $((C_4\times C_{12}).C_4)$ $\,\rtimes\,$ $C_2$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $(Q_8.D_6)$ . $C_4$ $(C_6\times Q_8)$ . $D_4$ $(C_4:Q_8)$ . $D_6$ $(C_2\times Q_8)$ . $D_{12}$ all 17

Elements of the group are displayed as words in the generators from the presentation given above.

Homology

Abelianization: $C_{2} \times C_{4} $
Schur multiplier: $C_{2}$
Commutator length: $1$

Subgroups

There are 494 subgroups in 106 conjugacy classes, 23 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_2^3.D_{12}$
Commutator: $G' \simeq$ $C_6\times Q_8$ $G/G' \simeq$ $C_2\times C_4$
Frattini: $\Phi \simeq$ $C_4:Q_8$ $G/\Phi \simeq$ $D_6$
Fitting: $\operatorname{Fit} \simeq$ $C_{12}.Q_{16}$ $G/\operatorname{Fit} \simeq$ $C_2$
Radical: $R \simeq$ $(C_4\times C_{12}).D_4$ $G/R \simeq$ $C_1$
Socle: $\operatorname{soc} \simeq$ $C_6$ $G/\operatorname{soc} \simeq$ $C_2\wr C_4$
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_4^2.D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $(C_4\times C_{12}).D_4$ $\rhd$ $C_6\times Q_8$ $\rhd$ $C_2$ $\rhd$ $C_1$
Chief series $(C_4\times C_{12}).D_4$ $\rhd$ $D_{12}.D_4$ $\rhd$ $C_{12}:Q_8$ $\rhd$ $C_6\times Q_8$ $\rhd$ $C_2\times C_{12}$ $\rhd$ $C_2\times C_6$ $\rhd$ $C_6$ $\rhd$ $C_3$ $\rhd$ $C_1$
Lower central series $(C_4\times C_{12}).D_4$ $\rhd$ $C_6\times Q_8$ $\rhd$ $C_2\times C_{12}$ $\rhd$ $C_2\times C_6$ $\rhd$ $C_6$ $\rhd$ $C_3$
Upper central series $C_1$ $\lhd$ $C_2$ $\lhd$ $C_2^2$ $\lhd$ $C_2\times C_4$ $\lhd$ $C_4:Q_8$ $\lhd$ $C_4.Q_{16}$

Character theory

Complex character table

See the $36 \times 36$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $22 \times 22$ rational character table.