Properties

Label 256.49985
Order \( 2^{8} \)
Exponent \( 2^{2} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ \( 2^{3} \)
$\card{\mathrm{Aut}(G)}$ \( 2^{15} \)
$\card{\mathrm{Out}(G)}$ \( 2^{10} \)
Perm deg. $40$
Trans deg. $128$
Rank $5$

Related objects

Downloads

Learn more

Group information

Description:$C_2^3.C_2^5$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism group:Group of order \(32768\)\(\medspace = 2^{15} \) (generators)
Outer automorphisms:$C_2^{10}$, of order \(1024\)\(\medspace = 2^{10} \)
Composition factors:$C_2$ x 8
Nilpotency class:$2$
Derived length:$2$

This group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Group statistics

Order 1 2 4
Elements 1 39 216 256
Conjugacy classes   1 11 34 46
Divisions 1 11 28 40
Autjugacy classes 1 11 27 39

Dimension 1 4 8
Irr. complex chars.   32 14 0 46
Irr. rational chars. 32 2 6 40

Minimal Presentations

Permutation degree:$40$
Transitive degree:$128$
Rank: $5$
Inequivalent generating 5-tuples: $9999360$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none none none
Arbitrary 12 20 20

Constructions

Presentation: ${\langle a, b, c, d, e \mid b^{2}=c^{4}=d^{4}=e^{4}=[a,c]=[b,e]=[c,d]=[d,e]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Permutation group:Degree $40$ $\langle(1,2)(3,12)(4,9)(5,10)(6,13)(7,11)(8,15)(14,16)(17,18,21,19)(20,23,24,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $(C_4^2.D_4)$ $\,\rtimes\,$ $C_2$ $(C_2^3.C_2^4)$ $\,\rtimes\,$ $C_2$ $(C_2^3.C_2^4)$ $\,\rtimes\,$ $C_2$ $(C_2^3.C_2^4)$ $\,\rtimes\,$ $C_2$ all 29
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_2^4$ . $C_2^4$ (4) $C_2^3$ . $C_2^5$ $(C_2^3.Q_8)$ . $C_2^2$ (8) $(C_2^3.Q_8)$ . $C_2^2$ (5) all 43

Elements of the group are displayed as words in the generators from the presentation given above.

Homology

Abelianization: $C_{2}^{5} $
Schur multiplier: $C_{2}^{7}$
Commutator length: $1$

Subgroups

There are 1559 subgroups in 725 conjugacy classes, 391 normal (389 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2^3$ $G/Z \simeq$ $C_2^5$
Commutator: $G' \simeq$ $C_2^3$ $G/G' \simeq$ $C_2^5$
Frattini: $\Phi \simeq$ $C_2^3$ $G/\Phi \simeq$ $C_2^5$
Fitting: $\operatorname{Fit} \simeq$ $C_2^3.C_2^5$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_2^3.C_2^5$ $G/R \simeq$ $C_1$
Socle: $\operatorname{soc} \simeq$ $C_2^3$ $G/\operatorname{soc} \simeq$ $C_2^5$
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^3.C_2^5$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $C_2^3.C_2^5$ $\rhd$ $C_2^3$ $\rhd$ $C_1$
Chief series $C_2^3.C_2^5$ $\rhd$ $C_2^3.C_2^4$ $\rhd$ $C_4^2:C_4$ $\rhd$ $C_2\times C_4^2$ $\rhd$ $C_2^2\times C_4$ $\rhd$ $C_2^3$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Lower central series $C_2^3.C_2^5$ $\rhd$ $C_2^3$ $\rhd$ $C_1$
Upper central series $C_1$ $\lhd$ $C_2^3$ $\lhd$ $C_2^3.C_2^5$

Character theory

Complex character table

See the $46 \times 46$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $40 \times 40$ rational character table.