L(s) = 1 | + (−0.989 + 0.142i)2-s + (−0.997 − 0.0713i)3-s + (0.959 − 0.281i)4-s + (1.27 − 1.47i)5-s + (0.997 − 0.0713i)6-s + (0.540 + 0.841i)7-s + (−0.909 + 0.415i)8-s + (0.989 + 0.142i)9-s + (−1.05 + 1.64i)10-s + (−0.977 + 0.212i)12-s + (1.00 + 0.647i)13-s + (−0.654 − 0.755i)14-s + (−1.38 + 1.38i)15-s + (0.841 − 0.540i)16-s − 0.999·18-s + (−0.562 − 1.91i)19-s + ⋯ |
L(s) = 1 | + (−0.989 + 0.142i)2-s + (−0.997 − 0.0713i)3-s + (0.959 − 0.281i)4-s + (1.27 − 1.47i)5-s + (0.997 − 0.0713i)6-s + (0.540 + 0.841i)7-s + (−0.909 + 0.415i)8-s + (0.989 + 0.142i)9-s + (−1.05 + 1.64i)10-s + (−0.977 + 0.212i)12-s + (1.00 + 0.647i)13-s + (−0.654 − 0.755i)14-s + (−1.38 + 1.38i)15-s + (0.841 − 0.540i)16-s − 0.999·18-s + (−0.562 − 1.91i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.716 + 0.697i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.716 + 0.697i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8858662625\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8858662625\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.989 - 0.142i)T \) |
| 3 | \( 1 + (0.997 + 0.0713i)T \) |
| 7 | \( 1 + (-0.540 - 0.841i)T \) |
| 23 | \( 1 + (-0.841 - 0.540i)T \) |
good | 5 | \( 1 + (-1.27 + 1.47i)T + (-0.142 - 0.989i)T^{2} \) |
| 11 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 13 | \( 1 + (-1.00 - 0.647i)T + (0.415 + 0.909i)T^{2} \) |
| 17 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
| 19 | \( 1 + (0.562 + 1.91i)T + (-0.841 + 0.540i)T^{2} \) |
| 29 | \( 1 + (0.841 + 0.540i)T^{2} \) |
| 31 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 37 | \( 1 + (-0.142 + 0.989i)T^{2} \) |
| 41 | \( 1 + (-0.142 - 0.989i)T^{2} \) |
| 43 | \( 1 + (-0.654 - 0.755i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 59 | \( 1 + (-0.0771 + 0.120i)T + (-0.415 - 0.909i)T^{2} \) |
| 61 | \( 1 + (-1.28 + 0.587i)T + (0.654 - 0.755i)T^{2} \) |
| 67 | \( 1 + (-0.959 + 0.281i)T^{2} \) |
| 71 | \( 1 + (0.281 - 0.0405i)T + (0.959 - 0.281i)T^{2} \) |
| 73 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 79 | \( 1 + (1.03 - 1.61i)T + (-0.415 - 0.909i)T^{2} \) |
| 83 | \( 1 + (-0.627 - 0.724i)T + (-0.142 + 0.989i)T^{2} \) |
| 89 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 97 | \( 1 + (-0.142 - 0.989i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.740693180710303303124572279568, −8.139945207046180747618340189491, −6.87485776372137369604475377542, −6.40952371515992502378718256220, −5.53609891418283605772108713526, −5.22195496226775841772066595040, −4.36910732143697834785379890263, −2.48306103128443245666052326763, −1.67194955311729357708698991887, −0.941800410524192995628633617446,
1.23424377950804259953774246217, 1.95720822107119571971228713709, 3.16880259800652640254563341358, 3.96241113353308000439001982597, 5.41908216291901269537679730542, 6.05552591675020186021802574629, 6.52831246228277804012206598305, 7.22134863893637385799186929630, 7.87207535392873357818840004744, 8.826043929561271538572663672079