L(s) = 1 | + (0.989 − 0.142i)2-s + (−0.707 − 0.707i)3-s + (0.959 − 0.281i)4-s + (1.27 − 1.47i)5-s + (−0.800 − 0.599i)6-s + (0.540 + 0.841i)7-s + (0.909 − 0.415i)8-s + 1.00i·9-s + (1.05 − 1.64i)10-s + (−0.877 − 0.479i)12-s + (−1.00 − 0.647i)13-s + (0.654 + 0.755i)14-s + (−1.94 + 0.139i)15-s + (0.841 − 0.540i)16-s + (0.142 + 0.989i)18-s + (0.562 + 1.91i)19-s + ⋯ |
L(s) = 1 | + (0.989 − 0.142i)2-s + (−0.707 − 0.707i)3-s + (0.959 − 0.281i)4-s + (1.27 − 1.47i)5-s + (−0.800 − 0.599i)6-s + (0.540 + 0.841i)7-s + (0.909 − 0.415i)8-s + 1.00i·9-s + (1.05 − 1.64i)10-s + (−0.877 − 0.479i)12-s + (−1.00 − 0.647i)13-s + (0.654 + 0.755i)14-s + (−1.94 + 0.139i)15-s + (0.841 − 0.540i)16-s + (0.142 + 0.989i)18-s + (0.562 + 1.91i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0850 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0850 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.555475627\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.555475627\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.989 + 0.142i)T \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 7 | \( 1 + (-0.540 - 0.841i)T \) |
| 23 | \( 1 + (0.841 + 0.540i)T \) |
good | 5 | \( 1 + (-1.27 + 1.47i)T + (-0.142 - 0.989i)T^{2} \) |
| 11 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 13 | \( 1 + (1.00 + 0.647i)T + (0.415 + 0.909i)T^{2} \) |
| 17 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
| 19 | \( 1 + (-0.562 - 1.91i)T + (-0.841 + 0.540i)T^{2} \) |
| 29 | \( 1 + (0.841 + 0.540i)T^{2} \) |
| 31 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 37 | \( 1 + (-0.142 + 0.989i)T^{2} \) |
| 41 | \( 1 + (-0.142 - 0.989i)T^{2} \) |
| 43 | \( 1 + (-0.654 - 0.755i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 59 | \( 1 + (-0.0771 + 0.120i)T + (-0.415 - 0.909i)T^{2} \) |
| 61 | \( 1 + (1.28 - 0.587i)T + (0.654 - 0.755i)T^{2} \) |
| 67 | \( 1 + (-0.959 + 0.281i)T^{2} \) |
| 71 | \( 1 + (-0.281 + 0.0405i)T + (0.959 - 0.281i)T^{2} \) |
| 73 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 79 | \( 1 + (1.03 - 1.61i)T + (-0.415 - 0.909i)T^{2} \) |
| 83 | \( 1 + (-0.627 - 0.724i)T + (-0.142 + 0.989i)T^{2} \) |
| 89 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 97 | \( 1 + (-0.142 - 0.989i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.113324756003783343132217925604, −7.922420131153898403762010316069, −6.64965658658003376855375532151, −5.75250068934605507006546602818, −5.63954859137009577936624330743, −5.00482196527189118347388813982, −4.26420716543407216676938122673, −2.63390043299699377778847581139, −1.91948979172214567275004708664, −1.25874774407091825794388883623,
1.73990119060196406722651468546, 2.69815964516065332966589319479, 3.45825402182195360685782963281, 4.48074680769946711278432582614, 5.04601441772977697787159186831, 5.81946424369593520707779337466, 6.54063832210163758630720337954, 7.07423750435451200259485731331, 7.55089710508993660993961169283, 9.138527086834462205814548551171