L(s) = 1 | + (0.989 − 0.142i)2-s + (−0.707 − 0.707i)3-s + (0.959 − 0.281i)4-s + (1.27 − 1.47i)5-s + (−0.800 − 0.599i)6-s + (0.540 + 0.841i)7-s + (0.909 − 0.415i)8-s + 1.00i·9-s + (1.05 − 1.64i)10-s + (−0.877 − 0.479i)12-s + (−1.00 − 0.647i)13-s + (0.654 + 0.755i)14-s + (−1.94 + 0.139i)15-s + (0.841 − 0.540i)16-s + (0.142 + 0.989i)18-s + (0.562 + 1.91i)19-s + ⋯ |
L(s) = 1 | + (0.989 − 0.142i)2-s + (−0.707 − 0.707i)3-s + (0.959 − 0.281i)4-s + (1.27 − 1.47i)5-s + (−0.800 − 0.599i)6-s + (0.540 + 0.841i)7-s + (0.909 − 0.415i)8-s + 1.00i·9-s + (1.05 − 1.64i)10-s + (−0.877 − 0.479i)12-s + (−1.00 − 0.647i)13-s + (0.654 + 0.755i)14-s + (−1.94 + 0.139i)15-s + (0.841 − 0.540i)16-s + (0.142 + 0.989i)18-s + (0.562 + 1.91i)19-s + ⋯ |
Λ(s)=(=(3864s/2ΓC(s)L(s)(0.0850+0.996i)Λ(1−s)
Λ(s)=(=(3864s/2ΓC(s)L(s)(0.0850+0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
3864
= 23⋅3⋅7⋅23
|
Sign: |
0.0850+0.996i
|
Analytic conductor: |
1.92838 |
Root analytic conductor: |
1.38866 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3864(1469,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3864, ( :0), 0.0850+0.996i)
|
Particular Values
L(21) |
≈ |
2.555475627 |
L(21) |
≈ |
2.555475627 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.989+0.142i)T |
| 3 | 1+(0.707+0.707i)T |
| 7 | 1+(−0.540−0.841i)T |
| 23 | 1+(0.841+0.540i)T |
good | 5 | 1+(−1.27+1.47i)T+(−0.142−0.989i)T2 |
| 11 | 1+(0.959+0.281i)T2 |
| 13 | 1+(1.00+0.647i)T+(0.415+0.909i)T2 |
| 17 | 1+(−0.841−0.540i)T2 |
| 19 | 1+(−0.562−1.91i)T+(−0.841+0.540i)T2 |
| 29 | 1+(0.841+0.540i)T2 |
| 31 | 1+(0.654−0.755i)T2 |
| 37 | 1+(−0.142+0.989i)T2 |
| 41 | 1+(−0.142−0.989i)T2 |
| 43 | 1+(−0.654−0.755i)T2 |
| 47 | 1+T2 |
| 53 | 1+(−0.415+0.909i)T2 |
| 59 | 1+(−0.0771+0.120i)T+(−0.415−0.909i)T2 |
| 61 | 1+(1.28−0.587i)T+(0.654−0.755i)T2 |
| 67 | 1+(−0.959+0.281i)T2 |
| 71 | 1+(−0.281+0.0405i)T+(0.959−0.281i)T2 |
| 73 | 1+(−0.841+0.540i)T2 |
| 79 | 1+(1.03−1.61i)T+(−0.415−0.909i)T2 |
| 83 | 1+(−0.627−0.724i)T+(−0.142+0.989i)T2 |
| 89 | 1+(0.654+0.755i)T2 |
| 97 | 1+(−0.142−0.989i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.113324756003783343132217925604, −7.922420131153898403762010316069, −6.64965658658003376855375532151, −5.75250068934605507006546602818, −5.63954859137009577936624330743, −5.00482196527189118347388813982, −4.26420716543407216676938122673, −2.63390043299699377778847581139, −1.91948979172214567275004708664, −1.25874774407091825794388883623,
1.73990119060196406722651468546, 2.69815964516065332966589319479, 3.45825402182195360685782963281, 4.48074680769946711278432582614, 5.04601441772977697787159186831, 5.81946424369593520707779337466, 6.54063832210163758630720337954, 7.07423750435451200259485731331, 7.55089710508993660993961169283, 9.138527086834462205814548551171