Properties

Label 4-130299-1.1-c1e2-0-2
Degree $4$
Conductor $130299$
Sign $-1$
Analytic cond. $8.30797$
Root an. cond. $1.69775$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4-s + 4·9-s − 2·12-s − 6·13-s − 3·16-s + 8·23-s + 2·25-s − 5·27-s − 13·29-s + 4·36-s + 12·39-s − 2·43-s + 6·48-s + 49-s − 6·52-s − 5·53-s − 12·61-s − 7·64-s − 16·69-s − 4·75-s + 13·79-s + 4·81-s + 26·87-s + 8·92-s + 2·100-s − 16·101-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/2·4-s + 4/3·9-s − 0.577·12-s − 1.66·13-s − 3/4·16-s + 1.66·23-s + 2/5·25-s − 0.962·27-s − 2.41·29-s + 2/3·36-s + 1.92·39-s − 0.304·43-s + 0.866·48-s + 1/7·49-s − 0.832·52-s − 0.686·53-s − 1.53·61-s − 7/8·64-s − 1.92·69-s − 0.461·75-s + 1.46·79-s + 4/9·81-s + 2.78·87-s + 0.834·92-s + 1/5·100-s − 1.59·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 130299 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130299 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(130299\)    =    \(3 \cdot 13^{2} \cdot 257\)
Sign: $-1$
Analytic conductor: \(8.30797\)
Root analytic conductor: \(1.69775\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 130299,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + p T + p T^{2} ) \)
13$C_2$ \( 1 + 6 T + p T^{2} \)
257$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 6 T + p T^{2} ) \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 53 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 112 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 5 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 28 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.389434006236662257866462170991, −8.856727366412736884879351798508, −7.897989633982946005800867276360, −7.42601733891164258471787769867, −7.19538406758942105902594100962, −6.63446474334995854148568589639, −6.27779463749130551938602487295, −5.37239450597629614951800168608, −5.17242324946863764798903618907, −4.62441841076814613386562922440, −3.98172620748362877077238450205, −3.05783406874093789686590222193, −2.31682846498223717527349919200, −1.46031728981134736337328990499, 0, 1.46031728981134736337328990499, 2.31682846498223717527349919200, 3.05783406874093789686590222193, 3.98172620748362877077238450205, 4.62441841076814613386562922440, 5.17242324946863764798903618907, 5.37239450597629614951800168608, 6.27779463749130551938602487295, 6.63446474334995854148568589639, 7.19538406758942105902594100962, 7.42601733891164258471787769867, 7.897989633982946005800867276360, 8.856727366412736884879351798508, 9.389434006236662257866462170991

Graph of the $Z$-function along the critical line