Properties

Label 3-1-1.1-r0e3-m7.41m31.54p38.95-0
Degree $3$
Conductor $1$
Sign $1$
Analytic cond. $36.6512$
Root an. cond. $3.32171$
Arithmetic no
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Downloads

Learn more

Dirichlet series

L(s)  = 1  + (1.04 − 0.286i)2-s + (2.23 − 0.105i)3-s + (−0.0355 − 0.883i)4-s + (0.156 + 0.705i)5-s + (2.30 − 0.750i)6-s + (−0.121 − 0.589i)7-s + (−0.462 − 0.912i)8-s + (2.76 − 0.578i)9-s + (0.364 + 0.692i)10-s + (0.385 + 0.164i)11-s + (−0.172 − 1.97i)12-s + (0.163 + 0.281i)13-s + (−0.295 − 0.581i)14-s + (0.423 + 1.56i)15-s + (0.0849 − 0.173i)16-s + (1.04 − 0.0920i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\R}(s-31.5i) \, \Gamma_{\R}(s-7.40i) \, \Gamma_{\R}(s+38.9i) \, L(s)\cr=\mathstrut & \,\overline{\Lambda}(1-s)\end{aligned}\]

Invariants

Degree: \(3\)
Conductor: \(1\)
Sign: $1$
Analytic conductor: \(36.6512\)
Root analytic conductor: \(3.32171\)
Rational: no
Arithmetic: no
Primitive: yes
Self-dual: no
Selberg data: \((3,\ 1,\ (-31.538134i, -7.4078318i, 38.945964i:\ ),\ 1)\)

Euler product

\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{3} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−24.0662, −22.1417, −21.0580, −20.1576, −18.8302, −16.6136, −15.0468, −14.2202, −13.3628, −12.4634, −9.5366, −8.5063, −7.8197, −5.3839, −3.9270, −3.1947, −1.8634, 1.4514, 3.0208, 3.9287, 9.7166, 13.2813, 14.2223, 14.9111, 18.8886, 19.9115, 21.3851, 23.2942

Graph of the $Z$-function along the critical line