After the Riemann zeta function, the analytic conductor of this L-function is the smallest among L-functions of degree 1.
L(s) = 1 | − 2-s − 3-s + 4-s + 6-s − 7-s − 8-s + 9-s + 11-s − 12-s − 13-s + 14-s + 16-s − 17-s − 18-s + 19-s + 21-s − 22-s − 23-s + 24-s + 26-s − 27-s − 28-s + 29-s + 31-s − 32-s − 33-s + 34-s + ⋯ |
L(s) = 1 | − 2-s − 3-s + 4-s + 6-s − 7-s − 8-s + 9-s + 11-s − 12-s − 13-s + 14-s + 16-s − 17-s − 18-s + 19-s + 21-s − 22-s − 23-s + 24-s + 26-s − 27-s − 28-s + 29-s + 31-s − 32-s − 33-s + 34-s + ⋯ |
Λ(s)=(=(5s/2ΓR(s)L(s)Λ(1−s)
Λ(s)=(=(5s/2ΓR(s)L(s)Λ(1−s)
Degree: |
1 |
Conductor: |
5
|
Sign: |
1
|
Analytic conductor: |
0.0232199 |
Root analytic conductor: |
0.0232199 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ5(4,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(1, 5, (0: ), 1)
|
Particular Values
L(21) |
≈ |
0.2317509475 |
L(21) |
≈ |
0.2317509475 |
L(1) |
≈ |
0.4304089409 |
L(1) |
≈ |
0.4304089409 |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
good | 2 | 1−T |
| 3 | 1−T |
| 7 | 1−T |
| 11 | 1+T |
| 13 | 1−T |
| 17 | 1−T |
| 19 | 1+T |
| 23 | 1−T |
| 29 | 1+T |
| 31 | 1+T |
| 37 | 1−T |
| 41 | 1+T |
| 43 | 1−T |
| 47 | 1−T |
| 53 | 1−T |
| 59 | 1+T |
| 61 | 1+T |
| 67 | 1−T |
| 71 | 1+T |
| 73 | 1−T |
| 79 | 1+T |
| 83 | 1−T |
| 89 | 1+T |
| 97 | 1−T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−55.58928033540481015096458899849, −53.83044519544216335105426902233, −52.1259022313169741886041306959, −51.08775192674649135525825720413, −48.34566182106784617654820130449, −46.49272715949140534533919935167, −45.4273000827822893888415619096, −44.03129006144169504470090805842, −41.84243854579169430850930688531, −39.56057294640318170505509505995, −38.12918472143653185015141827037, −35.86863837181227459459504863887, −34.728812978904808674143729833981, −33.00045600687051436794975917721, −29.70790935048096556923098651865, −28.46103510017752247518697827232, −26.77609594800414011652357496527, −24.58846621740819520765626997608, −22.227405454459410911877624963081, −19.54073262278475025037869002299, −17.566994292325555202701595268144, −16.03382112838423567459325378224, −11.95884562608351453026565868826, −9.831444432886669616348321347458, −6.64845334472771471612327845997,
6.64845334472771471612327845997, 9.831444432886669616348321347458, 11.95884562608351453026565868826, 16.03382112838423567459325378224, 17.566994292325555202701595268144, 19.54073262278475025037869002299, 22.227405454459410911877624963081, 24.58846621740819520765626997608, 26.77609594800414011652357496527, 28.46103510017752247518697827232, 29.70790935048096556923098651865, 33.00045600687051436794975917721, 34.728812978904808674143729833981, 35.86863837181227459459504863887, 38.12918472143653185015141827037, 39.56057294640318170505509505995, 41.84243854579169430850930688531, 44.03129006144169504470090805842, 45.4273000827822893888415619096, 46.49272715949140534533919935167, 48.34566182106784617654820130449, 51.08775192674649135525825720413, 52.1259022313169741886041306959, 53.83044519544216335105426902233, 55.58928033540481015096458899849