L(s) = 1 | + (0.994 + 0.104i)2-s + (−0.309 − 0.951i)3-s + (0.978 + 0.207i)4-s + (−0.406 + 0.913i)5-s + (−0.207 − 0.978i)6-s + (0.951 + 0.309i)8-s + (−0.809 + 0.587i)9-s + (−0.499 + 0.866i)10-s + (−0.104 − 0.994i)12-s + (0.994 + 0.104i)15-s + (0.913 + 0.406i)16-s + (−0.325 + 0.402i)17-s + (−0.866 + 0.5i)18-s + (1.45 + 0.309i)19-s + (−0.587 + 0.809i)20-s + ⋯ |
L(s) = 1 | + (0.994 + 0.104i)2-s + (−0.309 − 0.951i)3-s + (0.978 + 0.207i)4-s + (−0.406 + 0.913i)5-s + (−0.207 − 0.978i)6-s + (0.951 + 0.309i)8-s + (−0.809 + 0.587i)9-s + (−0.499 + 0.866i)10-s + (−0.104 − 0.994i)12-s + (0.994 + 0.104i)15-s + (0.913 + 0.406i)16-s + (−0.325 + 0.402i)17-s + (−0.866 + 0.5i)18-s + (1.45 + 0.309i)19-s + (−0.587 + 0.809i)20-s + ⋯ |
Λ(s)=(=(3660s/2ΓC(s)L(s)(0.964−0.263i)Λ(1−s)
Λ(s)=(=(3660s/2ΓC(s)L(s)(0.964−0.263i)Λ(1−s)
Degree: |
2 |
Conductor: |
3660
= 22⋅3⋅5⋅61
|
Sign: |
0.964−0.263i
|
Analytic conductor: |
1.82657 |
Root analytic conductor: |
1.35150 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3660(1799,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3660, ( :0), 0.964−0.263i)
|
Particular Values
L(21) |
≈ |
2.096067339 |
L(21) |
≈ |
2.096067339 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.994−0.104i)T |
| 3 | 1+(0.309+0.951i)T |
| 5 | 1+(0.406−0.913i)T |
| 61 | 1+(−0.994+0.104i)T |
good | 7 | 1+(−0.406−0.913i)T2 |
| 11 | 1+iT2 |
| 13 | 1+(0.5−0.866i)T2 |
| 17 | 1+(0.325−0.402i)T+(−0.207−0.978i)T2 |
| 19 | 1+(−1.45−0.309i)T+(0.913+0.406i)T2 |
| 23 | 1+(−0.103−0.0163i)T+(0.951+0.309i)T2 |
| 29 | 1+(−0.866+0.5i)T2 |
| 31 | 1+(−0.715−0.0375i)T+(0.994+0.104i)T2 |
| 37 | 1+(−0.587+0.809i)T2 |
| 41 | 1+(−0.809−0.587i)T2 |
| 43 | 1+(0.207−0.978i)T2 |
| 47 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 53 | 1+(1.53−0.243i)T+(0.951−0.309i)T2 |
| 59 | 1+(0.994−0.104i)T2 |
| 67 | 1+(−0.743+0.669i)T2 |
| 71 | 1+(0.743+0.669i)T2 |
| 73 | 1+(−0.669+0.743i)T2 |
| 79 | 1+(−0.846+0.685i)T+(0.207−0.978i)T2 |
| 83 | 1+(0.604+0.544i)T+(0.104+0.994i)T2 |
| 89 | 1+(0.587+0.809i)T2 |
| 97 | 1+(−0.104+0.994i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.282370542326186815039457672083, −7.69918597690318989608260852601, −7.16857415124556069776186729678, −6.46007030430190845862867762991, −5.90871245248483598027175370751, −5.09655774264093798218400383293, −4.10422261730467806534258260942, −3.14902738354187552439135137503, −2.54013604280408238543892076026, −1.39740595060115756532057462205,
1.01847965194732620556057739787, 2.54583849842729334281317633957, 3.50347287475603578058182959696, 4.12258520158076787303673606159, 5.05247522814020824106390056203, 5.21268357407293140594539852247, 6.18414326677547869525852164130, 7.07011763623169070991450731844, 7.908420426033585819926674198998, 8.756200797386247129193206846441