L(s) = 1 | + (0.669 − 0.743i)2-s + (0.309 − 0.951i)3-s + (−0.104 − 0.994i)4-s + (0.994 + 0.104i)5-s + (−0.499 − 0.866i)6-s + (−0.809 − 0.587i)8-s + (−0.809 − 0.587i)9-s + (0.743 − 0.669i)10-s + (−0.978 − 0.207i)12-s + (0.406 − 0.913i)15-s + (−0.978 + 0.207i)16-s + (0.692 − 1.80i)17-s + (−0.978 + 0.207i)18-s + (0.278 + 0.309i)19-s − i·20-s + ⋯ |
L(s) = 1 | + (0.669 − 0.743i)2-s + (0.309 − 0.951i)3-s + (−0.104 − 0.994i)4-s + (0.994 + 0.104i)5-s + (−0.499 − 0.866i)6-s + (−0.809 − 0.587i)8-s + (−0.809 − 0.587i)9-s + (0.743 − 0.669i)10-s + (−0.978 − 0.207i)12-s + (0.406 − 0.913i)15-s + (−0.978 + 0.207i)16-s + (0.692 − 1.80i)17-s + (−0.978 + 0.207i)18-s + (0.278 + 0.309i)19-s − i·20-s + ⋯ |
Λ(s)=(=(3660s/2ΓC(s)L(s)(−0.880+0.473i)Λ(1−s)
Λ(s)=(=(3660s/2ΓC(s)L(s)(−0.880+0.473i)Λ(1−s)
Degree: |
2 |
Conductor: |
3660
= 22⋅3⋅5⋅61
|
Sign: |
−0.880+0.473i
|
Analytic conductor: |
1.82657 |
Root analytic conductor: |
1.35150 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3660(1499,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3660, ( :0), −0.880+0.473i)
|
Particular Values
L(21) |
≈ |
2.225267479 |
L(21) |
≈ |
2.225267479 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.669+0.743i)T |
| 3 | 1+(−0.309+0.951i)T |
| 5 | 1+(−0.994−0.104i)T |
| 61 | 1+(0.406+0.913i)T |
good | 7 | 1+(0.994−0.104i)T2 |
| 11 | 1−iT2 |
| 13 | 1+(0.5−0.866i)T2 |
| 17 | 1+(−0.692+1.80i)T+(−0.743−0.669i)T2 |
| 19 | 1+(−0.278−0.309i)T+(−0.104+0.994i)T2 |
| 23 | 1+(1.65−0.262i)T+(0.951−0.309i)T2 |
| 29 | 1+(0.866−0.5i)T2 |
| 31 | 1+(−0.685−1.05i)T+(−0.406+0.913i)T2 |
| 37 | 1+(−0.587−0.809i)T2 |
| 41 | 1+(−0.809+0.587i)T2 |
| 43 | 1+(0.743−0.669i)T2 |
| 47 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 53 | 1+(−1.84−0.292i)T+(0.951+0.309i)T2 |
| 59 | 1+(−0.406−0.913i)T2 |
| 67 | 1+(−0.207+0.978i)T2 |
| 71 | 1+(0.207+0.978i)T2 |
| 73 | 1+(0.978−0.207i)T2 |
| 79 | 1+(1.86−0.715i)T+(0.743−0.669i)T2 |
| 83 | 1+(0.413+1.94i)T+(−0.913+0.406i)T2 |
| 89 | 1+(0.587−0.809i)T2 |
| 97 | 1+(0.913+0.406i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.520835418675228056055675298903, −7.48576775251704706060254663148, −6.82841026589873577202575760372, −5.97362261223308726267977152087, −5.53704208226566623344243482955, −4.62780473204381418907939399088, −3.37603191978107673667251945673, −2.73514877329721288835417982230, −1.93930216876560395610471382687, −1.00939866272458158434239695742,
1.99732315808733553506832139194, 2.87921827755711657415228620231, 3.91773278623148982903527795648, 4.36297608999466799395601712396, 5.50881907575141353155388127412, 5.78538132333117834917616725708, 6.51795405663168902208065540479, 7.64163484833410241200954920387, 8.370292709270745375902396691453, 8.788994492071571794328288351098