Properties

Label 2-369-9.7-c1-0-18
Degree 22
Conductor 369369
Sign 0.6540.755i0.654 - 0.755i
Analytic cond. 2.946472.94647
Root an. cond. 1.716531.71653
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.111 + 0.193i)2-s + (1.67 − 0.435i)3-s + (0.974 + 1.68i)4-s + (0.0946 + 0.163i)5-s + (−0.103 + 0.373i)6-s + (−1.37 + 2.38i)7-s − 0.883·8-s + (2.62 − 1.45i)9-s − 0.0423·10-s + (0.463 − 0.803i)11-s + (2.36 + 2.40i)12-s + (0.893 + 1.54i)13-s + (−0.308 − 0.533i)14-s + (0.230 + 0.233i)15-s + (−1.85 + 3.20i)16-s + 2.65·17-s + ⋯
L(s)  = 1  + (−0.0790 + 0.136i)2-s + (0.967 − 0.251i)3-s + (0.487 + 0.844i)4-s + (0.0423 + 0.0733i)5-s + (−0.0421 + 0.152i)6-s + (−0.520 + 0.901i)7-s − 0.312·8-s + (0.873 − 0.486i)9-s − 0.0133·10-s + (0.139 − 0.242i)11-s + (0.683 + 0.694i)12-s + (0.247 + 0.429i)13-s + (−0.0823 − 0.142i)14-s + (0.0594 + 0.0603i)15-s + (−0.462 + 0.801i)16-s + 0.644·17-s + ⋯

Functional equation

Λ(s)=(369s/2ΓC(s)L(s)=((0.6540.755i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 369 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.654 - 0.755i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(369s/2ΓC(s+1/2)L(s)=((0.6540.755i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 369 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.654 - 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 369369    =    32413^{2} \cdot 41
Sign: 0.6540.755i0.654 - 0.755i
Analytic conductor: 2.946472.94647
Root analytic conductor: 1.716531.71653
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ369(124,)\chi_{369} (124, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 369, ( :1/2), 0.6540.755i)(2,\ 369,\ (\ :1/2),\ 0.654 - 0.755i)

Particular Values

L(1)L(1) \approx 1.70828+0.780201i1.70828 + 0.780201i
L(12)L(\frac12) \approx 1.70828+0.780201i1.70828 + 0.780201i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(1.67+0.435i)T 1 + (-1.67 + 0.435i)T
41 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
good2 1+(0.1110.193i)T+(11.73i)T2 1 + (0.111 - 0.193i)T + (-1 - 1.73i)T^{2}
5 1+(0.09460.163i)T+(2.5+4.33i)T2 1 + (-0.0946 - 0.163i)T + (-2.5 + 4.33i)T^{2}
7 1+(1.372.38i)T+(3.56.06i)T2 1 + (1.37 - 2.38i)T + (-3.5 - 6.06i)T^{2}
11 1+(0.463+0.803i)T+(5.59.52i)T2 1 + (-0.463 + 0.803i)T + (-5.5 - 9.52i)T^{2}
13 1+(0.8931.54i)T+(6.5+11.2i)T2 1 + (-0.893 - 1.54i)T + (-6.5 + 11.2i)T^{2}
17 12.65T+17T2 1 - 2.65T + 17T^{2}
19 1+4.39T+19T2 1 + 4.39T + 19T^{2}
23 1+(0.924+1.60i)T+(11.5+19.9i)T2 1 + (0.924 + 1.60i)T + (-11.5 + 19.9i)T^{2}
29 1+(2.42+4.20i)T+(14.525.1i)T2 1 + (-2.42 + 4.20i)T + (-14.5 - 25.1i)T^{2}
31 1+(0.348+0.604i)T+(15.5+26.8i)T2 1 + (0.348 + 0.604i)T + (-15.5 + 26.8i)T^{2}
37 1+1.90T+37T2 1 + 1.90T + 37T^{2}
43 1+(0.6581.14i)T+(21.537.2i)T2 1 + (0.658 - 1.14i)T + (-21.5 - 37.2i)T^{2}
47 1+(0.839+1.45i)T+(23.540.7i)T2 1 + (-0.839 + 1.45i)T + (-23.5 - 40.7i)T^{2}
53 16.10T+53T2 1 - 6.10T + 53T^{2}
59 1+(5.56+9.64i)T+(29.5+51.0i)T2 1 + (5.56 + 9.64i)T + (-29.5 + 51.0i)T^{2}
61 1+(0.0536+0.0929i)T+(30.552.8i)T2 1 + (-0.0536 + 0.0929i)T + (-30.5 - 52.8i)T^{2}
67 1+(1.64+2.85i)T+(33.5+58.0i)T2 1 + (1.64 + 2.85i)T + (-33.5 + 58.0i)T^{2}
71 1+1.77T+71T2 1 + 1.77T + 71T^{2}
73 10.140T+73T2 1 - 0.140T + 73T^{2}
79 1+(0.4870.845i)T+(39.568.4i)T2 1 + (0.487 - 0.845i)T + (-39.5 - 68.4i)T^{2}
83 1+(5.45+9.45i)T+(41.571.8i)T2 1 + (-5.45 + 9.45i)T + (-41.5 - 71.8i)T^{2}
89 1+17.7T+89T2 1 + 17.7T + 89T^{2}
97 1+(5.81+10.0i)T+(48.584.0i)T2 1 + (-5.81 + 10.0i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.84419022326951812743506569662, −10.53902408398552205075844449539, −9.391740152638058934406988037356, −8.595908022100378640472152050223, −8.001851975149609734498393002119, −6.80431113429715636857883543780, −6.13337919235245244845717671795, −4.21081509071750222710070168001, −3.09063027186109103218369928071, −2.19568236206555445299749512523, 1.39492095488772618712099243434, 2.90064245173521981866323302833, 4.04164787421682389720783340754, 5.36909888763919898719623178402, 6.69790225192492934053899890373, 7.43458803801651078417442356980, 8.663608918343568543776860864484, 9.582781348589565778639429355629, 10.35877194919686663385734632882, 10.83347504623366850118770621990

Graph of the ZZ-function along the critical line