Properties

Label 2-369-9.7-c1-0-18
Degree $2$
Conductor $369$
Sign $0.654 - 0.755i$
Analytic cond. $2.94647$
Root an. cond. $1.71653$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.111 + 0.193i)2-s + (1.67 − 0.435i)3-s + (0.974 + 1.68i)4-s + (0.0946 + 0.163i)5-s + (−0.103 + 0.373i)6-s + (−1.37 + 2.38i)7-s − 0.883·8-s + (2.62 − 1.45i)9-s − 0.0423·10-s + (0.463 − 0.803i)11-s + (2.36 + 2.40i)12-s + (0.893 + 1.54i)13-s + (−0.308 − 0.533i)14-s + (0.230 + 0.233i)15-s + (−1.85 + 3.20i)16-s + 2.65·17-s + ⋯
L(s)  = 1  + (−0.0790 + 0.136i)2-s + (0.967 − 0.251i)3-s + (0.487 + 0.844i)4-s + (0.0423 + 0.0733i)5-s + (−0.0421 + 0.152i)6-s + (−0.520 + 0.901i)7-s − 0.312·8-s + (0.873 − 0.486i)9-s − 0.0133·10-s + (0.139 − 0.242i)11-s + (0.683 + 0.694i)12-s + (0.247 + 0.429i)13-s + (−0.0823 − 0.142i)14-s + (0.0594 + 0.0603i)15-s + (−0.462 + 0.801i)16-s + 0.644·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 369 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.654 - 0.755i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 369 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.654 - 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(369\)    =    \(3^{2} \cdot 41\)
Sign: $0.654 - 0.755i$
Analytic conductor: \(2.94647\)
Root analytic conductor: \(1.71653\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{369} (124, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 369,\ (\ :1/2),\ 0.654 - 0.755i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.70828 + 0.780201i\)
\(L(\frac12)\) \(\approx\) \(1.70828 + 0.780201i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.67 + 0.435i)T \)
41 \( 1 + (-0.5 - 0.866i)T \)
good2 \( 1 + (0.111 - 0.193i)T + (-1 - 1.73i)T^{2} \)
5 \( 1 + (-0.0946 - 0.163i)T + (-2.5 + 4.33i)T^{2} \)
7 \( 1 + (1.37 - 2.38i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-0.463 + 0.803i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (-0.893 - 1.54i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 - 2.65T + 17T^{2} \)
19 \( 1 + 4.39T + 19T^{2} \)
23 \( 1 + (0.924 + 1.60i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-2.42 + 4.20i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (0.348 + 0.604i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + 1.90T + 37T^{2} \)
43 \( 1 + (0.658 - 1.14i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-0.839 + 1.45i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 - 6.10T + 53T^{2} \)
59 \( 1 + (5.56 + 9.64i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-0.0536 + 0.0929i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (1.64 + 2.85i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 1.77T + 71T^{2} \)
73 \( 1 - 0.140T + 73T^{2} \)
79 \( 1 + (0.487 - 0.845i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (-5.45 + 9.45i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + 17.7T + 89T^{2} \)
97 \( 1 + (-5.81 + 10.0i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.84419022326951812743506569662, −10.53902408398552205075844449539, −9.391740152638058934406988037356, −8.595908022100378640472152050223, −8.001851975149609734498393002119, −6.80431113429715636857883543780, −6.13337919235245244845717671795, −4.21081509071750222710070168001, −3.09063027186109103218369928071, −2.19568236206555445299749512523, 1.39492095488772618712099243434, 2.90064245173521981866323302833, 4.04164787421682389720783340754, 5.36909888763919898719623178402, 6.69790225192492934053899890373, 7.43458803801651078417442356980, 8.663608918343568543776860864484, 9.582781348589565778639429355629, 10.35877194919686663385734632882, 10.83347504623366850118770621990

Graph of the $Z$-function along the critical line