L(s) = 1 | + (−0.111 + 0.193i)2-s + (1.67 − 0.435i)3-s + (0.974 + 1.68i)4-s + (0.0946 + 0.163i)5-s + (−0.103 + 0.373i)6-s + (−1.37 + 2.38i)7-s − 0.883·8-s + (2.62 − 1.45i)9-s − 0.0423·10-s + (0.463 − 0.803i)11-s + (2.36 + 2.40i)12-s + (0.893 + 1.54i)13-s + (−0.308 − 0.533i)14-s + (0.230 + 0.233i)15-s + (−1.85 + 3.20i)16-s + 2.65·17-s + ⋯ |
L(s) = 1 | + (−0.0790 + 0.136i)2-s + (0.967 − 0.251i)3-s + (0.487 + 0.844i)4-s + (0.0423 + 0.0733i)5-s + (−0.0421 + 0.152i)6-s + (−0.520 + 0.901i)7-s − 0.312·8-s + (0.873 − 0.486i)9-s − 0.0133·10-s + (0.139 − 0.242i)11-s + (0.683 + 0.694i)12-s + (0.247 + 0.429i)13-s + (−0.0823 − 0.142i)14-s + (0.0594 + 0.0603i)15-s + (−0.462 + 0.801i)16-s + 0.644·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 369 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.654 - 0.755i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 369 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.654 - 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.70828 + 0.780201i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.70828 + 0.780201i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.67 + 0.435i)T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (0.111 - 0.193i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.0946 - 0.163i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (1.37 - 2.38i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.463 + 0.803i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.893 - 1.54i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 2.65T + 17T^{2} \) |
| 19 | \( 1 + 4.39T + 19T^{2} \) |
| 23 | \( 1 + (0.924 + 1.60i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.42 + 4.20i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.348 + 0.604i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 1.90T + 37T^{2} \) |
| 43 | \( 1 + (0.658 - 1.14i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.839 + 1.45i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 6.10T + 53T^{2} \) |
| 59 | \( 1 + (5.56 + 9.64i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.0536 + 0.0929i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.64 + 2.85i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 1.77T + 71T^{2} \) |
| 73 | \( 1 - 0.140T + 73T^{2} \) |
| 79 | \( 1 + (0.487 - 0.845i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.45 + 9.45i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 17.7T + 89T^{2} \) |
| 97 | \( 1 + (-5.81 + 10.0i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.84419022326951812743506569662, −10.53902408398552205075844449539, −9.391740152638058934406988037356, −8.595908022100378640472152050223, −8.001851975149609734498393002119, −6.80431113429715636857883543780, −6.13337919235245244845717671795, −4.21081509071750222710070168001, −3.09063027186109103218369928071, −2.19568236206555445299749512523,
1.39492095488772618712099243434, 2.90064245173521981866323302833, 4.04164787421682389720783340754, 5.36909888763919898719623178402, 6.69790225192492934053899890373, 7.43458803801651078417442356980, 8.663608918343568543776860864484, 9.582781348589565778639429355629, 10.35877194919686663385734632882, 10.83347504623366850118770621990