Properties

Label 2-369-9.4-c1-0-36
Degree 22
Conductor 369369
Sign 0.9860.163i-0.986 - 0.163i
Analytic cond. 2.946472.94647
Root an. cond. 1.716531.71653
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.373 − 0.646i)2-s + (−0.160 − 1.72i)3-s + (0.721 − 1.24i)4-s + (−1.18 + 2.04i)5-s + (−1.05 + 0.747i)6-s + (0.193 + 0.334i)7-s − 2.56·8-s + (−2.94 + 0.552i)9-s + 1.76·10-s + (−2.61 − 4.52i)11-s + (−2.27 − 1.04i)12-s + (0.822 − 1.42i)13-s + (0.144 − 0.249i)14-s + (3.71 + 1.70i)15-s + (−0.484 − 0.838i)16-s − 6.42·17-s + ⋯
L(s)  = 1  + (−0.263 − 0.456i)2-s + (−0.0925 − 0.995i)3-s + (0.360 − 0.624i)4-s + (−0.528 + 0.915i)5-s + (−0.430 + 0.304i)6-s + (0.0729 + 0.126i)7-s − 0.908·8-s + (−0.982 + 0.184i)9-s + 0.557·10-s + (−0.787 − 1.36i)11-s + (−0.655 − 0.301i)12-s + (0.228 − 0.395i)13-s + (0.0385 − 0.0667i)14-s + (0.960 + 0.441i)15-s + (−0.121 − 0.209i)16-s − 1.55·17-s + ⋯

Functional equation

Λ(s)=(369s/2ΓC(s)L(s)=((0.9860.163i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 369 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.986 - 0.163i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(369s/2ΓC(s+1/2)L(s)=((0.9860.163i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 369 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.986 - 0.163i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 369369    =    32413^{2} \cdot 41
Sign: 0.9860.163i-0.986 - 0.163i
Analytic conductor: 2.946472.94647
Root analytic conductor: 1.716531.71653
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ369(247,)\chi_{369} (247, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 369, ( :1/2), 0.9860.163i)(2,\ 369,\ (\ :1/2),\ -0.986 - 0.163i)

Particular Values

L(1)L(1) \approx 0.0540838+0.659058i0.0540838 + 0.659058i
L(12)L(\frac12) \approx 0.0540838+0.659058i0.0540838 + 0.659058i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(0.160+1.72i)T 1 + (0.160 + 1.72i)T
41 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
good2 1+(0.373+0.646i)T+(1+1.73i)T2 1 + (0.373 + 0.646i)T + (-1 + 1.73i)T^{2}
5 1+(1.182.04i)T+(2.54.33i)T2 1 + (1.18 - 2.04i)T + (-2.5 - 4.33i)T^{2}
7 1+(0.1930.334i)T+(3.5+6.06i)T2 1 + (-0.193 - 0.334i)T + (-3.5 + 6.06i)T^{2}
11 1+(2.61+4.52i)T+(5.5+9.52i)T2 1 + (2.61 + 4.52i)T + (-5.5 + 9.52i)T^{2}
13 1+(0.822+1.42i)T+(6.511.2i)T2 1 + (-0.822 + 1.42i)T + (-6.5 - 11.2i)T^{2}
17 1+6.42T+17T2 1 + 6.42T + 17T^{2}
19 1+3.07T+19T2 1 + 3.07T + 19T^{2}
23 1+(3.88+6.73i)T+(11.519.9i)T2 1 + (-3.88 + 6.73i)T + (-11.5 - 19.9i)T^{2}
29 1+(4.708.14i)T+(14.5+25.1i)T2 1 + (-4.70 - 8.14i)T + (-14.5 + 25.1i)T^{2}
31 1+(1.19+2.06i)T+(15.526.8i)T2 1 + (-1.19 + 2.06i)T + (-15.5 - 26.8i)T^{2}
37 14.99T+37T2 1 - 4.99T + 37T^{2}
43 1+(2.80+4.85i)T+(21.5+37.2i)T2 1 + (2.80 + 4.85i)T + (-21.5 + 37.2i)T^{2}
47 1+(2.83+4.90i)T+(23.5+40.7i)T2 1 + (2.83 + 4.90i)T + (-23.5 + 40.7i)T^{2}
53 11.07T+53T2 1 - 1.07T + 53T^{2}
59 1+(3.07+5.33i)T+(29.551.0i)T2 1 + (-3.07 + 5.33i)T + (-29.5 - 51.0i)T^{2}
61 1+(4.78+8.28i)T+(30.5+52.8i)T2 1 + (4.78 + 8.28i)T + (-30.5 + 52.8i)T^{2}
67 1+(2.78+4.83i)T+(33.558.0i)T2 1 + (-2.78 + 4.83i)T + (-33.5 - 58.0i)T^{2}
71 112.9T+71T2 1 - 12.9T + 71T^{2}
73 1+12.2T+73T2 1 + 12.2T + 73T^{2}
79 1+(3.375.84i)T+(39.5+68.4i)T2 1 + (-3.37 - 5.84i)T + (-39.5 + 68.4i)T^{2}
83 1+(0.388+0.673i)T+(41.5+71.8i)T2 1 + (0.388 + 0.673i)T + (-41.5 + 71.8i)T^{2}
89 1+7.01T+89T2 1 + 7.01T + 89T^{2}
97 1+(3.916.78i)T+(48.5+84.0i)T2 1 + (-3.91 - 6.78i)T + (-48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.84747754002285675098546078649, −10.63864560701946791830408963404, −8.833672864662416876102416815141, −8.257427700417107211250279123761, −6.82990806954420064323069756481, −6.44293686925277708279316941385, −5.23699045660914557840235603401, −3.14330802278140980634825800207, −2.33909019527947211290884007322, −0.45783767292706726772607802352, 2.59184991744776144602601886357, 4.21984733787412630959778116484, 4.70243260144409285976424531455, 6.18209899875759285073434141654, 7.34908515355649000998761771378, 8.289229442211387680484301167573, 8.981410407430992548294664707938, 9.862524110258723558263663920400, 11.07443957396681617745128896013, 11.74126152968078163952954239492

Graph of the ZZ-function along the critical line