Properties

Label 1.54.a.a
Level 11
Weight 5454
Character orbit 1.a
Self dual yes
Analytic conductor 17.79017.790
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1,54,Mod(1,1)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1, base_ring=CyclotomicField(1)) chi = DirichletCharacter(H, H._module([])) N = Newforms(chi, 54, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1.1"); S:= CuspForms(chi, 54); N := Newforms(S);
 
Level: N N == 1 1
Weight: k k == 54 54
Character orbit: [χ][\chi] == 1.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 17.790310760817.7903107608
Analytic rank: 11
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x32315873743412x2421178019174503472x+612167648493870378955584 x^{4} - x^{3} - 2315873743412x^{2} - 421178019174503472x + 612167648493870378955584 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2273853713 2^{27}\cdot 3^{8}\cdot 5^{3}\cdot 7\cdot 13
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β117119080)q2+(β2+8136β1262102751820)q3+(β3+374β2++19 ⁣ ⁣32)q4+(600β3+11 ⁣ ⁣50)q5++(12 ⁣ ⁣16β3++50 ⁣ ⁣96)q99+O(q100) q + (\beta_1 - 17119080) q^{2} + ( - \beta_{2} + 8136 \beta_1 - 262102751820) q^{3} + (\beta_{3} + 374 \beta_{2} + \cdots + 19\!\cdots\!32) q^{4} + ( - 600 \beta_{3} + \cdots - 11\!\cdots\!50) q^{5}+ \cdots + ( - 12\!\cdots\!16 \beta_{3} + \cdots + 50\!\cdots\!96) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q68476320q21048411007280q3+78 ⁣ ⁣28q445 ⁣ ⁣00q5+36 ⁣ ⁣28q622 ⁣ ⁣00q7+13 ⁣ ⁣40q8+11 ⁣ ⁣12q9+23 ⁣ ⁣00q10++20 ⁣ ⁣84q99+O(q100) 4 q - 68476320 q^{2} - 1048411007280 q^{3} + 78\!\cdots\!28 q^{4} - 45\!\cdots\!00 q^{5} + 36\!\cdots\!28 q^{6} - 22\!\cdots\!00 q^{7} + 13\!\cdots\!40 q^{8} + 11\!\cdots\!12 q^{9} + 23\!\cdots\!00 q^{10}+ \cdots + 20\!\cdots\!84 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x32315873743412x2421178019174503472x+612167648493870378955584 x^{4} - x^{3} - 2315873743412x^{2} - 421178019174503472x + 612167648493870378955584 : Copy content Toggle raw display

β1\beta_{1}== 96ν24 96\nu - 24 Copy content Toggle raw display
β2\beta_{2}== (ν3+611437ν2+1620402960440ν392120600840009328)/119308 ( -\nu^{3} + 611437\nu^{2} + 1620402960440\nu - 392120600840009328 ) / 119308 Copy content Toggle raw display
β3\beta_{3}== (187ν3+435432545ν2452992885700072ν563273827738686130416)/59654 ( 187\nu^{3} + 435432545\nu^{2} - 452992885700072\nu - 563273827738686130416 ) / 59654 Copy content Toggle raw display
ν\nu== (β1+24)/96 ( \beta _1 + 24 ) / 96 Copy content Toggle raw display
ν2\nu^{2}== (β3+374β2+26188788β1+10671546209644800)/9216 ( \beta_{3} + 374\beta_{2} + 26188788\beta _1 + 10671546209644800 ) / 9216 Copy content Toggle raw display
ν3\nu^{3}== (611437β3870865090β2+171571478170596β1+2911198475853482464512)/9216 ( 611437\beta_{3} - 870865090\beta_{2} + 171571478170596\beta _1 + 2911198475853482464512 ) / 9216 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.26509e6
−708531.
447512.
1.52611e6
−1.38568e8 −5.95414e12 1.01938e16 −5.35900e18 8.25051e20 2.55363e22 −1.64427e23 1.60685e25 7.42585e26
1.2 −8.51381e7 6.54009e12 −1.75871e15 2.26338e17 −5.56810e20 −3.24923e22 9.16589e23 2.33895e25 −1.92700e25
1.3 2.58420e7 −2.97907e12 −8.33939e15 5.38136e18 −7.69850e19 2.33436e22 −4.48271e23 −1.05084e25 1.39065e26
1.4 1.29387e8 1.34470e12 7.73392e15 −4.81259e18 1.73988e20 −1.66125e22 −1.64746e23 −1.75750e25 −6.22689e26
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1.54.a.a 4
3.b odd 2 1 9.54.a.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1.54.a.a 4 1.a even 1 1 trivial
9.54.a.b 4 3.b odd 2 1

Hecke kernels

This newform subspace is the entire newspace S54new(Γ0(1))S_{54}^{\mathrm{new}}(\Gamma_0(1)).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4++39 ⁣ ⁣76 T^{4} + \cdots + 39\!\cdots\!76 Copy content Toggle raw display
33 T4++15 ⁣ ⁣76 T^{4} + \cdots + 15\!\cdots\!76 Copy content Toggle raw display
55 T4++31 ⁣ ⁣00 T^{4} + \cdots + 31\!\cdots\!00 Copy content Toggle raw display
77 T4++32 ⁣ ⁣96 T^{4} + \cdots + 32\!\cdots\!96 Copy content Toggle raw display
1111 T4++36 ⁣ ⁣76 T^{4} + \cdots + 36\!\cdots\!76 Copy content Toggle raw display
1313 T4++14 ⁣ ⁣56 T^{4} + \cdots + 14\!\cdots\!56 Copy content Toggle raw display
1717 T4+32 ⁣ ⁣64 T^{4} + \cdots - 32\!\cdots\!64 Copy content Toggle raw display
1919 T4+62 ⁣ ⁣00 T^{4} + \cdots - 62\!\cdots\!00 Copy content Toggle raw display
2323 T4++24 ⁣ ⁣36 T^{4} + \cdots + 24\!\cdots\!36 Copy content Toggle raw display
2929 T4++28 ⁣ ⁣00 T^{4} + \cdots + 28\!\cdots\!00 Copy content Toggle raw display
3131 T4++31 ⁣ ⁣96 T^{4} + \cdots + 31\!\cdots\!96 Copy content Toggle raw display
3737 T4++39 ⁣ ⁣16 T^{4} + \cdots + 39\!\cdots\!16 Copy content Toggle raw display
4141 T4+72 ⁣ ⁣44 T^{4} + \cdots - 72\!\cdots\!44 Copy content Toggle raw display
4343 T4++79 ⁣ ⁣96 T^{4} + \cdots + 79\!\cdots\!96 Copy content Toggle raw display
4747 T4++82 ⁣ ⁣56 T^{4} + \cdots + 82\!\cdots\!56 Copy content Toggle raw display
5353 T4+80 ⁣ ⁣24 T^{4} + \cdots - 80\!\cdots\!24 Copy content Toggle raw display
5959 T4+37 ⁣ ⁣00 T^{4} + \cdots - 37\!\cdots\!00 Copy content Toggle raw display
6161 T4++18 ⁣ ⁣76 T^{4} + \cdots + 18\!\cdots\!76 Copy content Toggle raw display
6767 T4+18 ⁣ ⁣64 T^{4} + \cdots - 18\!\cdots\!64 Copy content Toggle raw display
7171 T4++83 ⁣ ⁣36 T^{4} + \cdots + 83\!\cdots\!36 Copy content Toggle raw display
7373 T4++80 ⁣ ⁣36 T^{4} + \cdots + 80\!\cdots\!36 Copy content Toggle raw display
7979 T4++39 ⁣ ⁣00 T^{4} + \cdots + 39\!\cdots\!00 Copy content Toggle raw display
8383 T4++36 ⁣ ⁣16 T^{4} + \cdots + 36\!\cdots\!16 Copy content Toggle raw display
8989 T4+28 ⁣ ⁣00 T^{4} + \cdots - 28\!\cdots\!00 Copy content Toggle raw display
9797 T4++21 ⁣ ⁣56 T^{4} + \cdots + 21\!\cdots\!56 Copy content Toggle raw display
show more
show less