gp: [N,k,chi] = [11,6,Mod(1,11)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("11.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
11 11 1 1
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 2 + 4 T_{2} + 4 T 2 + 4
T2 + 4
acting on S 6 n e w ( Γ 0 ( 11 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(11)) S 6 n e w ( Γ 0 ( 1 1 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 4 T + 4 T + 4
T + 4
3 3 3
T + 15 T + 15 T + 1 5
T + 15
5 5 5
T + 19 T + 19 T + 1 9
T + 19
7 7 7
T − 10 T - 10 T − 1 0
T - 10
11 11 1 1
T + 121 T + 121 T + 1 2 1
T + 121
13 13 1 3
T + 1148 T + 1148 T + 1 1 4 8
T + 1148
17 17 1 7
T − 686 T - 686 T − 6 8 6
T - 686
19 19 1 9
T + 384 T + 384 T + 3 8 4
T + 384
23 23 2 3
T − 3709 T - 3709 T − 3 7 0 9
T - 3709
29 29 2 9
T + 5424 T + 5424 T + 5 4 2 4
T + 5424
31 31 3 1
T + 6443 T + 6443 T + 6 4 4 3
T + 6443
37 37 3 7
T − 12063 T - 12063 T − 1 2 0 6 3
T - 12063
41 41 4 1
T + 1528 T + 1528 T + 1 5 2 8
T + 1528
43 43 4 3
T + 4026 T + 4026 T + 4 0 2 6
T + 4026
47 47 4 7
T − 7168 T - 7168 T − 7 1 6 8
T - 7168
53 53 5 3
T + 29862 T + 29862 T + 2 9 8 6 2
T + 29862
59 59 5 9
T + 6461 T + 6461 T + 6 4 6 1
T + 6461
61 61 6 1
T + 16980 T + 16980 T + 1 6 9 8 0
T + 16980
67 67 6 7
T − 29999 T - 29999 T − 2 9 9 9 9
T - 29999
71 71 7 1
T − 31023 T - 31023 T − 3 1 0 2 3
T - 31023
73 73 7 3
T − 1924 T - 1924 T − 1 9 2 4
T - 1924
79 79 7 9
T − 65138 T - 65138 T − 6 5 1 3 8
T - 65138
83 83 8 3
T + 102714 T + 102714 T + 1 0 2 7 1 4
T + 102714
89 89 8 9
T − 17415 T - 17415 T − 1 7 4 1 5
T - 17415
97 97 9 7
T − 66905 T - 66905 T − 6 6 9 0 5
T - 66905
show more
show less