Properties

Label 11.6.a.a
Level 1111
Weight 66
Character orbit 11.a
Self dual yes
Analytic conductor 1.7641.764
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [11,6,Mod(1,11)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(11, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("11.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 11 11
Weight: k k == 6 6
Character orbit: [χ][\chi] == 11.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.764222017941.76422201794
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q4q215q316q419q5+60q6+10q7+192q818q9+76q10121q11+240q121148q1340q14+285q15256q16+686q17+72q18++2178q99+O(q100) q - 4 q^{2} - 15 q^{3} - 16 q^{4} - 19 q^{5} + 60 q^{6} + 10 q^{7} + 192 q^{8} - 18 q^{9} + 76 q^{10} - 121 q^{11} + 240 q^{12} - 1148 q^{13} - 40 q^{14} + 285 q^{15} - 256 q^{16} + 686 q^{17} + 72 q^{18}+ \cdots + 2178 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−4.00000 −15.0000 −16.0000 −19.0000 60.0000 10.0000 192.000 −18.0000 76.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
1111 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 11.6.a.a 1
3.b odd 2 1 99.6.a.c 1
4.b odd 2 1 176.6.a.c 1
5.b even 2 1 275.6.a.a 1
5.c odd 4 2 275.6.b.a 2
7.b odd 2 1 539.6.a.c 1
8.b even 2 1 704.6.a.h 1
8.d odd 2 1 704.6.a.c 1
11.b odd 2 1 121.6.a.b 1
33.d even 2 1 1089.6.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.6.a.a 1 1.a even 1 1 trivial
99.6.a.c 1 3.b odd 2 1
121.6.a.b 1 11.b odd 2 1
176.6.a.c 1 4.b odd 2 1
275.6.a.a 1 5.b even 2 1
275.6.b.a 2 5.c odd 4 2
539.6.a.c 1 7.b odd 2 1
704.6.a.c 1 8.d odd 2 1
704.6.a.h 1 8.b even 2 1
1089.6.a.c 1 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2+4 T_{2} + 4 acting on S6new(Γ0(11))S_{6}^{\mathrm{new}}(\Gamma_0(11)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+4 T + 4 Copy content Toggle raw display
33 T+15 T + 15 Copy content Toggle raw display
55 T+19 T + 19 Copy content Toggle raw display
77 T10 T - 10 Copy content Toggle raw display
1111 T+121 T + 121 Copy content Toggle raw display
1313 T+1148 T + 1148 Copy content Toggle raw display
1717 T686 T - 686 Copy content Toggle raw display
1919 T+384 T + 384 Copy content Toggle raw display
2323 T3709 T - 3709 Copy content Toggle raw display
2929 T+5424 T + 5424 Copy content Toggle raw display
3131 T+6443 T + 6443 Copy content Toggle raw display
3737 T12063 T - 12063 Copy content Toggle raw display
4141 T+1528 T + 1528 Copy content Toggle raw display
4343 T+4026 T + 4026 Copy content Toggle raw display
4747 T7168 T - 7168 Copy content Toggle raw display
5353 T+29862 T + 29862 Copy content Toggle raw display
5959 T+6461 T + 6461 Copy content Toggle raw display
6161 T+16980 T + 16980 Copy content Toggle raw display
6767 T29999 T - 29999 Copy content Toggle raw display
7171 T31023 T - 31023 Copy content Toggle raw display
7373 T1924 T - 1924 Copy content Toggle raw display
7979 T65138 T - 65138 Copy content Toggle raw display
8383 T+102714 T + 102714 Copy content Toggle raw display
8989 T17415 T - 17415 Copy content Toggle raw display
9797 T66905 T - 66905 Copy content Toggle raw display
show more
show less