gp: [N,k,chi] = [2,42,Mod(1,2)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2, base_ring=CyclotomicField(1))
chi = DirichletCharacter(H, H._module([]))
N = Newforms(chi, 42, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2.1");
S:= CuspForms(chi, 42);
N := Newforms(S);
Newform invariants
sage: traces = [2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 2880 4559670239569 \beta = 2880\sqrt{4559670239569} β = 2 8 8 0 4 5 5 9 6 7 0 2 3 9 5 6 9 .
We also show the integral q q q -expansion of the trace form .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 2 − 8863347528 T 3 − 18179996484555185904 T_{3}^{2} - 8863347528T_{3} - 18179996484555185904 T 3 2 − 8 8 6 3 3 4 7 5 2 8 T 3 − 1 8 1 7 9 9 9 6 4 8 4 5 5 5 1 8 5 9 0 4
T3^2 - 8863347528*T3 - 18179996484555185904
acting on S 42 n e w ( Γ 0 ( 2 ) ) S_{42}^{\mathrm{new}}(\Gamma_0(2)) S 4 2 n e w ( Γ 0 ( 2 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T − 1048576 ) 2 (T - 1048576)^{2} ( T − 1 0 4 8 5 7 6 ) 2
(T - 1048576)^2
3 3 3
T 2 + ⋯ − 18 ⋯ 04 T^{2} + \cdots - 18\!\cdots\!04 T 2 + ⋯ − 1 8 ⋯ 0 4
T^2 - 8863347528*T - 18179996484555185904
5 5 5
T 2 + ⋯ − 89 ⋯ 00 T^{2} + \cdots - 89\!\cdots\!00 T 2 + ⋯ − 8 9 ⋯ 0 0
T^2 - 97599184325580*T - 89479417818762018419753137500
7 7 7
T 2 + ⋯ − 23 ⋯ 16 T^{2} + \cdots - 23\!\cdots\!16 T 2 + ⋯ − 2 3 ⋯ 1 6
T^2 - 217106802373088656*T - 23358297180167245689247304023802816
11 11 1 1
T 2 + ⋯ − 13 ⋯ 36 T^{2} + \cdots - 13\!\cdots\!36 T 2 + ⋯ − 1 3 ⋯ 3 6
T^2 - 110594481484939565784*T - 1322880145089815552579598320564828480858736
13 13 1 3
T 2 + ⋯ + 74 ⋯ 56 T^{2} + \cdots + 74\!\cdots\!56 T 2 + ⋯ + 7 4 ⋯ 5 6
T^2 - 173293106838448696895068*T + 7474984508623206163124473634021017860303346756
17 17 1 7
T 2 + ⋯ + 26 ⋯ 04 T^{2} + \cdots + 26\!\cdots\!04 T 2 + ⋯ + 2 6 ⋯ 0 4
T^2 + 10287966260741677078429404*T + 26425481041900044501782171394237719675041218286404
19 19 1 9
T 2 + ⋯ − 84 ⋯ 00 T^{2} + \cdots - 84\!\cdots\!00 T 2 + ⋯ − 8 4 ⋯ 0 0
T^2 - 206254882139859790701457000*T - 8464966019297476181487616856586347602757735211052400
23 23 2 3
T 2 + ⋯ + 55 ⋯ 56 T^{2} + \cdots + 55\!\cdots\!56 T 2 + ⋯ + 5 5 ⋯ 5 6
T^2 - 14925421378885128304361915568*T + 55093915280183848562201055481062778458422873572297621056
29 29 2 9
T 2 + ⋯ − 42 ⋯ 00 T^{2} + \cdots - 42\!\cdots\!00 T 2 + ⋯ − 4 2 ⋯ 0 0
T^2 + 1375143011941884388614889894020*T - 426498460967325231824407040021434468259616482193920889589500
31 31 3 1
T 2 + ⋯ − 17 ⋯ 36 T^{2} + \cdots - 17\!\cdots\!36 T 2 + ⋯ − 1 7 ⋯ 3 6
T^2 + 3626496922711160469799126663616*T - 17806455774814486761644842459528229916036521858234236317940736
37 37 3 7
T 2 + ⋯ + 34 ⋯ 24 T^{2} + \cdots + 34\!\cdots\!24 T 2 + ⋯ + 3 4 ⋯ 2 4
T^2 - 120356679589378915210866994599436*T + 3435475519927985546882600330736969219472957749022291099122009124
41 41 4 1
T 2 + ⋯ − 19 ⋯ 76 T^{2} + \cdots - 19\!\cdots\!76 T 2 + ⋯ − 1 9 ⋯ 7 6
T^2 - 1270177139906840106861139346878164*T - 1903318796480955478713256965295951462867924243487216089668785358876
43 43 4 3
T 2 + ⋯ + 20 ⋯ 76 T^{2} + \cdots + 20\!\cdots\!76 T 2 + ⋯ + 2 0 ⋯ 7 6
T^2 + 6045433421160616098770468790853352*T + 2095962024421012638238443712246181727851846588802439730960126098576
47 47 4 7
T 2 + ⋯ + 12 ⋯ 24 T^{2} + \cdots + 12\!\cdots\!24 T 2 + ⋯ + 1 2 ⋯ 2 4
T^2 + 25416478966330542868882280891861664*T + 122391068623404429695375305468220257120058284708760538251824443373824
53 53 5 3
T 2 + ⋯ + 20 ⋯ 76 T^{2} + \cdots + 20\!\cdots\!76 T 2 + ⋯ + 2 0 ⋯ 7 6
T^2 + 301376484284740318156836692232048852*T + 20129160059846411345073270970570604722328736724489695466344928408751076
59 59 5 9
T 2 + ⋯ − 16 ⋯ 00 T^{2} + \cdots - 16\!\cdots\!00 T 2 + ⋯ − 1 6 ⋯ 0 0
T^2 + 3282010250697938085995473868454788040*T - 169172561430143431600320343415714064416946544147320797421528659817078000
61 61 6 1
T 2 + ⋯ − 13 ⋯ 76 T^{2} + \cdots - 13\!\cdots\!76 T 2 + ⋯ − 1 3 ⋯ 7 6
T^2 + 4485157745840460017677520841591879236*T - 13699743684736959659671437078852685479941439827221137258443083202925252476
67 67 6 7
T 2 + ⋯ + 11 ⋯ 84 T^{2} + \cdots + 11\!\cdots\!84 T 2 + ⋯ + 1 1 ⋯ 8 4
T^2 - 55055736076082381526441630307313037256*T + 117008466438863096680348576031230305003263294380701343262142109299826176784
71 71 7 1
T 2 + ⋯ − 58 ⋯ 36 T^{2} + \cdots - 58\!\cdots\!36 T 2 + ⋯ − 5 8 ⋯ 3 6
T^2 + 48857884738531480102553331099997138416*T - 5857650482572685067358405998622062847446109842009618701178306203575681331136
73 73 7 3
T 2 + ⋯ + 57 ⋯ 36 T^{2} + \cdots + 57\!\cdots\!36 T 2 + ⋯ + 5 7 ⋯ 3 6
T^2 + 485616958845162818165813572349849688812*T + 57303945428340953753380888240511542055954422653966470979329819015973556302436
79 79 7 9
T 2 + ⋯ + 16 ⋯ 00 T^{2} + \cdots + 16\!\cdots\!00 T 2 + ⋯ + 1 6 ⋯ 0 0
T^2 + 905766854341990828970937020702446890080*T + 162432770314136089738219314361865887012439414005615920275715009319731833555200
83 83 8 3
T 2 + ⋯ − 47 ⋯ 44 T^{2} + \cdots - 47\!\cdots\!44 T 2 + ⋯ − 4 7 ⋯ 4 4
T^2 - 1271755206567258248006583231290595969768*T - 47048453576745381308925997810273707448803440609922920821801779946636084466544
89 89 8 9
T 2 + ⋯ + 11 ⋯ 00 T^{2} + \cdots + 11\!\cdots\!00 T 2 + ⋯ + 1 1 ⋯ 0 0
T^2 - 2692414558304473820098690391828757436980*T + 1136615340573313303911885360138245384955888625713420221784291118034463177320100
97 97 9 7
T 2 + ⋯ + 19 ⋯ 04 T^{2} + \cdots + 19\!\cdots\!04 T 2 + ⋯ + 1 9 ⋯ 0 4
T^2 + 31989468315501178009691057062669320691004*T + 198159491876878047613494398436991713084705356696272241834778313258675823665392004
show more
show less