Properties

Label 4034.2.a.b
Level 40344034
Weight 22
Character orbit 4034.a
Self dual yes
Analytic conductor 32.21232.212
Analytic rank 11
Dimension 3535
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4034,2,Mod(1,4034)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4034, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4034.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 4034=22017 4034 = 2 \cdot 2017
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4034.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [35] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 32.211652175432.2116521754
Analytic rank: 11
Dimension: 3535
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 35q35q26q3+35q4+6q5+6q614q735q8+23q96q109q116q127q13+14q1419q15+35q16+17q1723q1825q19+64q99+O(q100) 35 q - 35 q^{2} - 6 q^{3} + 35 q^{4} + 6 q^{5} + 6 q^{6} - 14 q^{7} - 35 q^{8} + 23 q^{9} - 6 q^{10} - 9 q^{11} - 6 q^{12} - 7 q^{13} + 14 q^{14} - 19 q^{15} + 35 q^{16} + 17 q^{17} - 23 q^{18} - 25 q^{19}+ \cdots - 64 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −1.00000 −3.27997 1.00000 2.11941 3.27997 −0.124927 −1.00000 7.75819 −2.11941
1.2 −1.00000 −3.25702 1.00000 −1.18968 3.25702 1.65832 −1.00000 7.60820 1.18968
1.3 −1.00000 −2.93683 1.00000 0.0231797 2.93683 −4.16598 −1.00000 5.62497 −0.0231797
1.4 −1.00000 −2.83579 1.00000 4.39396 2.83579 −1.33504 −1.00000 5.04172 −4.39396
1.5 −1.00000 −2.39986 1.00000 −1.11547 2.39986 2.17590 −1.00000 2.75933 1.11547
1.6 −1.00000 −2.23091 1.00000 1.94904 2.23091 1.55699 −1.00000 1.97697 −1.94904
1.7 −1.00000 −2.01951 1.00000 3.52220 2.01951 −0.0194784 −1.00000 1.07840 −3.52220
1.8 −1.00000 −1.96432 1.00000 −0.678471 1.96432 4.37365 −1.00000 0.858567 0.678471
1.9 −1.00000 −1.95232 1.00000 −1.60299 1.95232 −2.46247 −1.00000 0.811553 1.60299
1.10 −1.00000 −1.90524 1.00000 −3.49980 1.90524 −2.88392 −1.00000 0.629935 3.49980
1.11 −1.00000 −1.74374 1.00000 −3.34943 1.74374 0.122108 −1.00000 0.0406325 3.34943
1.12 −1.00000 −1.52925 1.00000 3.51675 1.52925 −1.62140 −1.00000 −0.661396 −3.51675
1.13 −1.00000 −1.35256 1.00000 −0.395568 1.35256 1.50560 −1.00000 −1.17057 0.395568
1.14 −1.00000 −1.19422 1.00000 1.77357 1.19422 2.63831 −1.00000 −1.57384 −1.77357
1.15 −1.00000 −0.841269 1.00000 −1.88225 0.841269 −4.21612 −1.00000 −2.29227 1.88225
1.16 −1.00000 −0.715791 1.00000 2.28149 0.715791 −4.66835 −1.00000 −2.48764 −2.28149
1.17 −1.00000 −0.237603 1.00000 3.33211 0.237603 4.34322 −1.00000 −2.94355 −3.33211
1.18 −1.00000 0.00791248 1.00000 −2.05271 −0.00791248 −2.16347 −1.00000 −2.99994 2.05271
1.19 −1.00000 0.0555653 1.00000 0.675723 −0.0555653 −0.0958620 −1.00000 −2.99691 −0.675723
1.20 −1.00000 0.280261 1.00000 0.751535 −0.280261 1.30988 −1.00000 −2.92145 −0.751535
See all 35 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.35
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
20172017 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4034.2.a.b 35
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4034.2.a.b 35 1.a even 1 1 trivial