gp: [N,k,chi] = [8001,2,Mod(1,8001)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8001, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8001.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [22,0,0,10,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic q q q -expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
127 127 1 2 7
− 1 -1 − 1
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 8001 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(8001)) S 2 n e w ( Γ 0 ( 8 0 0 1 ) ) :
T 2 22 − 27 T 2 20 + 307 T 2 18 − 1912 T 2 16 + 7111 T 2 14 − 16187 T 2 12 + ⋯ − 16 T_{2}^{22} - 27 T_{2}^{20} + 307 T_{2}^{18} - 1912 T_{2}^{16} + 7111 T_{2}^{14} - 16187 T_{2}^{12} + \cdots - 16 T 2 2 2 − 2 7 T 2 2 0 + 3 0 7 T 2 1 8 − 1 9 1 2 T 2 1 6 + 7 1 1 1 T 2 1 4 − 1 6 1 8 7 T 2 1 2 + ⋯ − 1 6
T2^22 - 27*T2^20 + 307*T2^18 - 1912*T2^16 + 7111*T2^14 - 16187*T2^12 + 22362*T2^10 - 18281*T2^8 + 8680*T2^6 - 2300*T2^4 + 308*T2^2 - 16
T 5 22 − 42 T 5 20 + 737 T 5 18 − 7048 T 5 16 + 40077 T 5 14 − 138490 T 5 12 + ⋯ − 64 T_{5}^{22} - 42 T_{5}^{20} + 737 T_{5}^{18} - 7048 T_{5}^{16} + 40077 T_{5}^{14} - 138490 T_{5}^{12} + \cdots - 64 T 5 2 2 − 4 2 T 5 2 0 + 7 3 7 T 5 1 8 − 7 0 4 8 T 5 1 6 + 4 0 0 7 7 T 5 1 4 − 1 3 8 4 9 0 T 5 1 2 + ⋯ − 6 4
T5^22 - 42*T5^20 + 737*T5^18 - 7048*T5^16 + 40077*T5^14 - 138490*T5^12 + 285212*T5^10 - 330463*T5^8 + 194868*T5^6 - 49728*T5^4 + 3372*T5^2 - 64