Properties

Label 8001.2.a.x
Level 80018001
Weight 22
Character orbit 8001.a
Self dual yes
Analytic conductor 63.88863.888
Analytic rank 11
Dimension 2222
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8001,2,Mod(1,8001)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8001, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8001.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 8001=327127 8001 = 3^{2} \cdot 7 \cdot 127
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8001.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 63.888306657263.8883066572
Analytic rank: 11
Dimension: 2222
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 22q+10q4+22q74q1010q136q1618q1934q2226q25+10q2842q3116q3436q3746q4054q4312q46+22q4922q52+56q97+O(q100) 22 q + 10 q^{4} + 22 q^{7} - 4 q^{10} - 10 q^{13} - 6 q^{16} - 18 q^{19} - 34 q^{22} - 26 q^{25} + 10 q^{28} - 42 q^{31} - 16 q^{34} - 36 q^{37} - 46 q^{40} - 54 q^{43} - 12 q^{46} + 22 q^{49} - 22 q^{52}+ \cdots - 56 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −2.37730 0 3.65154 2.39021 0 1.00000 −3.92621 0 −5.68223
1.2 −2.32723 0 3.41602 1.82757 0 1.00000 −3.29542 0 −4.25318
1.3 −2.21969 0 2.92701 0.739015 0 1.00000 −2.05767 0 −1.64038
1.4 −1.94436 0 1.78053 −1.34248 0 1.00000 0.426737 0 2.61025
1.5 −1.69586 0 0.875937 −2.42277 0 1.00000 1.90625 0 4.10867
1.6 −1.56609 0 0.452631 −2.71234 0 1.00000 2.42332 0 4.24776
1.7 −0.775659 0 −1.39835 −0.833166 0 1.00000 2.63596 0 0.646253
1.8 −0.691771 0 −1.52145 −0.236679 0 1.00000 2.43604 0 0.163728
1.9 −0.684852 0 −1.53098 −0.182709 0 1.00000 2.41820 0 0.125129
1.10 −0.446366 0 −1.80076 2.33773 0 1.00000 1.69653 0 −1.04348
1.11 −0.384540 0 −1.85213 3.33517 0 1.00000 1.48130 0 −1.28251
1.12 0.384540 0 −1.85213 −3.33517 0 1.00000 −1.48130 0 −1.28251
1.13 0.446366 0 −1.80076 −2.33773 0 1.00000 −1.69653 0 −1.04348
1.14 0.684852 0 −1.53098 0.182709 0 1.00000 −2.41820 0 0.125129
1.15 0.691771 0 −1.52145 0.236679 0 1.00000 −2.43604 0 0.163728
1.16 0.775659 0 −1.39835 0.833166 0 1.00000 −2.63596 0 0.646253
1.17 1.56609 0 0.452631 2.71234 0 1.00000 −2.42332 0 4.24776
1.18 1.69586 0 0.875937 2.42277 0 1.00000 −1.90625 0 4.10867
1.19 1.94436 0 1.78053 1.34248 0 1.00000 −0.426737 0 2.61025
1.20 2.21969 0 2.92701 −0.739015 0 1.00000 2.05767 0 −1.64038
See all 22 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.22
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
77 1 -1
127127 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8001.2.a.x 22
3.b odd 2 1 inner 8001.2.a.x 22
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8001.2.a.x 22 1.a even 1 1 trivial
8001.2.a.x 22 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8001))S_{2}^{\mathrm{new}}(\Gamma_0(8001)):

T22227T220+307T2181912T216+7111T21416187T212+16 T_{2}^{22} - 27 T_{2}^{20} + 307 T_{2}^{18} - 1912 T_{2}^{16} + 7111 T_{2}^{14} - 16187 T_{2}^{12} + \cdots - 16 Copy content Toggle raw display
T52242T520+737T5187048T516+40077T514138490T512+64 T_{5}^{22} - 42 T_{5}^{20} + 737 T_{5}^{18} - 7048 T_{5}^{16} + 40077 T_{5}^{14} - 138490 T_{5}^{12} + \cdots - 64 Copy content Toggle raw display