Base field 5.5.65657.1
Generator \(w\), with minimal polynomial \(x^5 - x^4 - 5 x^3 + 2 x^2 + 5 x + 1\); narrow class number \(1\) and class number \(1\).
Form
| Weight: | $[2, 2, 2, 2, 2]$ | 
| Level: | $[15, 15, w^4 - w^3 - 5 w^2 + 2 w + 3]$ | 
| Dimension: | $1$ | 
| CM: | no | 
| Base change: | no | 
| Newspace dimension: | $3$ | 
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue | 
|---|---|---|
| 3 | $[3, 3, -w^4 + w^3 + 4 w^2 - 2 w - 2]$ | $\phantom{-}1$ | 
| 5 | $[5, 5, w^2 - w - 2]$ | $-1$ | 
| 19 | $[19, 19, w^4 - 2 w^3 - 4 w^2 + 5 w + 4]$ | $\phantom{-}0$ | 
| 23 | $[23, 23, -w^3 + w^2 + 3 w - 1]$ | $\phantom{-}8$ | 
| 29 | $[29, 29, 2 w^4 - 3 w^3 - 8 w^2 + 7 w + 4]$ | $-2$ | 
| 32 | $[32, 2, 2]$ | $\phantom{-}3$ | 
| 37 | $[37, 37, w^3 - 2 w^2 - 2 w + 2]$ | $\phantom{-}10$ | 
| 41 | $[41, 41, -2 w^4 + 3 w^3 + 9 w^2 - 8 w - 6]$ | $-10$ | 
| 43 | $[43, 43, -2 w^4 + 3 w^3 + 8 w^2 - 8 w - 6]$ | $\phantom{-}8$ | 
| 47 | $[47, 47, w^4 - 2 w^3 - 5 w^2 + 6 w + 5]$ | $\phantom{-}8$ | 
| 53 | $[53, 53, -w^4 + w^3 + 4 w^2 - w - 4]$ | $\phantom{-}6$ | 
| 61 | $[61, 61, w^2 - 2 w - 3]$ | $-10$ | 
| 67 | $[67, 67, w^4 - w^3 - 4 w^2 + 3 w]$ | $\phantom{-}12$ | 
| 67 | $[67, 67, -w^4 + w^3 + 5 w^2 - 2 w - 2]$ | $\phantom{-}12$ | 
| 71 | $[71, 71, w^4 - w^3 - 4 w^2 + 5]$ | $-16$ | 
| 71 | $[71, 71, w^4 - 2 w^3 - 3 w^2 + 5 w + 3]$ | $\phantom{-}16$ | 
| 71 | $[71, 71, 2 w^4 - 2 w^3 - 8 w^2 + 5 w + 4]$ | $-12$ | 
| 73 | $[73, 73, -2 w^4 + 2 w^3 + 9 w^2 - 5 w - 6]$ | $\phantom{-}2$ | 
| 81 | $[81, 3, -2 w^4 + 3 w^3 + 10 w^2 - 9 w - 10]$ | $-14$ | 
| 97 | $[97, 97, -2 w^4 + 3 w^3 + 7 w^2 - 5 w - 4]$ | $-10$ | 
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue | 
|---|---|---|
| $3$ | $[3, 3, -w^4 + w^3 + 4 w^2 - 2 w - 2]$ | $-1$ | 
| $5$ | $[5, 5, w^2 - w - 2]$ | $1$ | 
