Properties

Label 5.3.d_h_v_br_cn
Base field $\F_{3}$
Dimension $5$
$p$-rank $5$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $5$
L-polynomial:  $1 + 3 x + 7 x^{2} + 21 x^{3} + 43 x^{4} + 65 x^{5} + 129 x^{6} + 189 x^{7} + 189 x^{8} + 243 x^{9} + 243 x^{10}$
Frobenius angles:  $\pm0.301681854727$, $\pm0.415573819332$, $\pm0.464717603270$, $\pm0.844622477384$, $\pm0.888308766885$
Angle rank:  $5$ (numerical)
Number field:  10.0.4343523185111747.1
Galois group:  $C_2 \wr S_5$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $5$
Slopes:  $[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1133$ $103103$ $40693961$ $3249497251$ $620709881693$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $7$ $15$ $55$ $75$ $167$ $807$ $2093$ $6771$ $19063$ $59695$

Jacobians and polarizations

This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3}$.

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is 10.0.4343523185111747.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
5.3.ad_h_av_br_acn$2$(not in LMFDB)