Invariants
Base field: | $\F_{17}$ |
Dimension: | $3$ |
L-polynomial: | $1 + 5 x + 10 x^{2} + 4 x^{3} + 170 x^{4} + 1445 x^{5} + 4913 x^{6}$ |
Frobenius angles: | $\pm0.233616406589$, $\pm0.644093291910$, $\pm0.865081944886$ |
Angle rank: | $3$ (numerical) |
Number field: | 6.0.349684823903256.1 |
Galois group: | $S_4\times C_2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $3$ |
Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6548$ | $23834720$ | $118279202132$ | $588060222422400$ | $2867769979134330688$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $23$ | $285$ | $4901$ | $84297$ | $1422508$ | $24139725$ | $410283169$ | $6975914417$ | $118586131547$ | $2015993274300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 61 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=x^7+16x^6+14x^5+8x^4+7x^3+2x^2+12x+12$
- $y^2=x^7+11x^6+11x^5+3x^4+15x^3+11x^2+x$
- $y^2=x^8+14x^7+13x^6+x^5+14x^4+13x^3+2x^2+3x+6$
- $y^2=x^8+14x^7+4x^6+5x^5+9x^3+15x^2+3x$
- $y^2=x^7+12x^6+10x^5+11x^4+5x^3+12x^2+13x+15$
- $y^2=x^8+11x^7+10x^6+13x^5+9x^4+4x^3+5x^2+15x+3$
- $y^2=x^8+10x^7+14x^6+4x^5+8x^4+14x^3+6x^2+2x+7$
- $y^2=x^8+12x^7+13x^6+12x^5+6x^4+3x^3+13x^2+10x+13$
- $y^2=x^8+12x^7+13x^6+14x^5+16x^4+6x^3+8x^2+9x+3$
- $y^2=x^8+14x^7+14x^6+8x^4+2x^3+x^2+13x+1$
- $y^2=3x^7+16x^6+14x^5+8x^4+10x^3+13x^2+9x+6$
- $y^2=3x^8+3x^7+13x^6+16x^5+16x^3+x^2+4x+7$
- $y^2=3x^8+x^7+16x^5+5x^4+10x^3+6x^2+12x+8$
- $y^2=x^8+5x^7+5x^6+2x^5+8x^4+14x^3+12x^2+13x+5$
- $y^2=x^8+9x^7+4x^5+13x^4+11x^3+11x^2+15x+14$
- $y^2=x^8+x^7+x^6+14x^5+2x^4+x^3+6x^2+8x+9$
- $y^2=x^8+15x^7+2x^6+15x^5+12x^4+11x^3+x^2+10x+3$
- $y^2=x^8+9x^7+16x^5+3x^4+5x^2+6x+11$
- $y^2=x^8+8x^7+x^6+8x^5+15x^4+9x^3+12x^2+6x+8$
- $y^2=x^8+8x^7+x^6+14x^5+4x^4+x^3+10x^2+7x+7$
- and 41 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$The endomorphism algebra of this simple isogeny class is 6.0.349684823903256.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
3.17.af_k_ae | $2$ | (not in LMFDB) |