Properties

Label 3.17.f_k_e
Base field $\F_{17}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $3$
L-polynomial:  $1 + 5 x + 10 x^{2} + 4 x^{3} + 170 x^{4} + 1445 x^{5} + 4913 x^{6}$
Frobenius angles:  $\pm0.233616406589$, $\pm0.644093291910$, $\pm0.865081944886$
Angle rank:  $3$ (numerical)
Number field:  6.0.349684823903256.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6548$ $23834720$ $118279202132$ $588060222422400$ $2867769979134330688$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $23$ $285$ $4901$ $84297$ $1422508$ $24139725$ $410283169$ $6975914417$ $118586131547$ $2015993274300$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 61 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is 6.0.349684823903256.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.af_k_ae$2$(not in LMFDB)