Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 13 x + 127 x^{2} - 1079 x^{3} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.175733013427$, $\pm0.544056787362$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.5026229.1 |
Galois group: | $D_{4}$ |
Jacobians: | $161$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5925$ | $48045825$ | $326666408175$ | $2252125225108125$ | $15516815667075570000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $71$ | $6975$ | $571307$ | $47454803$ | $3939237256$ | $326942271675$ | $27136050214477$ | $2252292217364083$ | $186940255867721141$ | $15516041182970811750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 161 curves (of which all are hyperelliptic):
- $y^2=55 x^6+19 x^5+72 x^4+81 x^3+78 x^2+30 x+66$
- $y^2=8 x^6+59 x^5+38 x^4+19 x^3+16 x^2+15 x+30$
- $y^2=2 x^6+48 x^5+53 x^4+43 x^3+61 x^2+29 x+26$
- $y^2=59 x^6+72 x^5+58 x^4+74 x^3+3 x^2+49 x+54$
- $y^2=19 x^6+11 x^5+55 x^4+60 x^3+10 x^2+24 x+54$
- $y^2=6 x^6+45 x^5+70 x^4+41 x^3+61 x^2+62 x+67$
- $y^2=12 x^6+26 x^5+76 x^4+68 x^3+73 x^2+81 x+63$
- $y^2=21 x^6+26 x^5+76 x^4+81 x^3+80 x^2+44 x+39$
- $y^2=7 x^6+12 x^5+36 x^4+20 x^3+7 x^2+45$
- $y^2=67 x^6+51 x^5+25 x^4+37 x^3+61 x^2+69 x+47$
- $y^2=43 x^6+x^5+35 x^4+63 x^3+57 x^2+77 x+60$
- $y^2=30 x^6+50 x^5+48 x^4+23 x^3+28 x^2+76 x+54$
- $y^2=49 x^6+35 x^5+50 x^4+74 x^3+69 x^2+43 x+55$
- $y^2=10 x^6+46 x^5+73 x^4+x^3+57 x^2+81 x+45$
- $y^2=19 x^6+39 x^5+74 x^4+17 x^3+3 x^2+75 x+65$
- $y^2=24 x^6+37 x^5+12 x^4+23 x^3+18 x^2+77 x+38$
- $y^2=7 x^6+23 x^5+19 x^4+8 x^3+25 x^2+64 x+33$
- $y^2=23 x^6+41 x^5+72 x^4+15 x^3+56 x^2+20 x+79$
- $y^2=44 x^6+65 x^5+47 x^4+23 x^3+42 x^2+28 x+41$
- $y^2=68 x^6+37 x^5+65 x^4+24 x^3+52 x^2+55 x+15$
- and 141 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is 4.0.5026229.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.n_ex | $2$ | (not in LMFDB) |