Properties

Label 100315.188
Modulus $100315$
Conductor $100315$
Order $5732$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100315, base_ring=CyclotomicField(5732))
 
M = H._module
 
chi = DirichletCharacter(H, M([4299,2516]))
 
pari: [g,chi] = znchar(Mod(188,100315))
 

Basic properties

Modulus: \(100315\)
Conductor: \(100315\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(5732\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 100315.r

\(\chi_{100315}(2,\cdot)\) \(\chi_{100315}(8,\cdot)\) \(\chi_{100315}(32,\cdot)\) \(\chi_{100315}(47,\cdot)\) \(\chi_{100315}(73,\cdot)\) \(\chi_{100315}(87,\cdot)\) \(\chi_{100315}(128,\cdot)\) \(\chi_{100315}(137,\cdot)\) \(\chi_{100315}(188,\cdot)\) \(\chi_{100315}(223,\cdot)\) \(\chi_{100315}(292,\cdot)\) \(\chi_{100315}(317,\cdot)\) \(\chi_{100315}(348,\cdot)\) \(\chi_{100315}(357,\cdot)\) \(\chi_{100315}(363,\cdot)\) \(\chi_{100315}(377,\cdot)\) \(\chi_{100315}(398,\cdot)\) \(\chi_{100315}(422,\cdot)\) \(\chi_{100315}(512,\cdot)\) \(\chi_{100315}(548,\cdot)\) \(\chi_{100315}(562,\cdot)\) \(\chi_{100315}(613,\cdot)\) \(\chi_{100315}(627,\cdot)\) \(\chi_{100315}(697,\cdot)\) \(\chi_{100315}(752,\cdot)\) \(\chi_{100315}(753,\cdot)\) \(\chi_{100315}(877,\cdot)\) \(\chi_{100315}(892,\cdot)\) \(\chi_{100315}(913,\cdot)\) \(\chi_{100315}(917,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{5732})$
Fixed field: Number field defined by a degree 5732 polynomial (not computed)

Values on generators

\((40127,40131)\) → \((-i,e\left(\frac{629}{1433}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 100315 }(188, a) \) \(-1\)\(1\)\(e\left(\frac{2383}{5732}\right)\)\(e\left(\frac{729}{5732}\right)\)\(e\left(\frac{2383}{2866}\right)\)\(e\left(\frac{778}{1433}\right)\)\(e\left(\frac{459}{5732}\right)\)\(e\left(\frac{1417}{5732}\right)\)\(e\left(\frac{729}{2866}\right)\)\(e\left(\frac{960}{1433}\right)\)\(e\left(\frac{5495}{5732}\right)\)\(e\left(\frac{5413}{5732}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 100315 }(188,a) \;\) at \(\;a = \) e.g. 2