Properties

Label 1768.1517
Modulus $1768$
Conductor $1768$
Order $12$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1768, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,6,8,9]))
 
pari: [g,chi] = znchar(Mod(1517,1768))
 

Basic properties

Modulus: \(1768\)
Conductor: \(1768\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1768.dg

\(\chi_{1768}(965,\cdot)\) \(\chi_{1768}(1101,\cdot)\) \(\chi_{1768}(1381,\cdot)\) \(\chi_{1768}(1517,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.25358702738605805230358528.1

Values on generators

\((1327,885,1497,105)\) → \((1,-1,e\left(\frac{2}{3}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(19\)\(21\)\(23\)\(25\)
\( \chi_{ 1768 }(1517, a) \) \(1\)\(1\)\(e\left(\frac{11}{12}\right)\)\(i\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(-1\)\(e\left(\frac{11}{12}\right)\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1768 }(1517,a) \;\) at \(\;a = \) e.g. 2