Properties

Label 2220.409
Modulus $2220$
Conductor $185$
Order $36$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2220, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,18,1]))
 
pari: [g,chi] = znchar(Mod(409,2220))
 

Basic properties

Modulus: \(2220\)
Conductor: \(185\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{185}(39,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2220.el

\(\chi_{2220}(109,\cdot)\) \(\chi_{2220}(409,\cdot)\) \(\chi_{2220}(649,\cdot)\) \(\chi_{2220}(829,\cdot)\) \(\chi_{2220}(949,\cdot)\) \(\chi_{2220}(1129,\cdot)\) \(\chi_{2220}(1189,\cdot)\) \(\chi_{2220}(1549,\cdot)\) \(\chi_{2220}(1609,\cdot)\) \(\chi_{2220}(1789,\cdot)\) \(\chi_{2220}(1909,\cdot)\) \(\chi_{2220}(2089,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.0.29411719834995153896864925426307140281034671856927417346954345703125.1

Values on generators

\((1111,1481,1777,1741)\) → \((1,1,-1,e\left(\frac{1}{36}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(41\)\(43\)
\( \chi_{ 2220 }(409, a) \) \(-1\)\(1\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(i\)\(e\left(\frac{1}{18}\right)\)\(i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2220 }(409,a) \;\) at \(\;a = \) e.g. 2