Properties

Label 35.2
Modulus $35$
Conductor $35$
Order $12$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(35, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([3,4]))
 
pari: [g,chi] = znchar(Mod(2,35))
 

Basic properties

Modulus: \(35\)
Conductor: \(35\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 35.l

\(\chi_{35}(2,\cdot)\) \(\chi_{35}(18,\cdot)\) \(\chi_{35}(23,\cdot)\) \(\chi_{35}(32,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.11259376953125.1

Values on generators

\((22,31)\) → \((i,e\left(\frac{1}{3}\right))\)

Values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(11\)\(12\)\(13\)\(16\)
\( \chi_{ 35 }(2, a) \) \(-1\)\(1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(1\)\(-i\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{11}{12}\right)\)\(-i\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 35 }(2,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 35 }(2,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 35 }(2,·),\chi_{ 35 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 35 }(2,·)) \;\) at \(\; a,b = \) e.g. 1,2