Properties

Label 4160.hw
Modulus $4160$
Conductor $4160$
Order $16$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4160, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,13,12,12]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(213,4160))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4160\)
Conductor: \(4160\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.3438190509295256478027799611834368000000000000.2

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{4160}(213,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{4160}(957,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(1\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{4160}(1253,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(1\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{4160}(1997,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(1\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{4160}(2293,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(1\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{15}{16}\right)\)
\(\chi_{4160}(3037,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(1\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{4160}(3333,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(1\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{3}{16}\right)\)
\(\chi_{4160}(4077,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{5}{16}\right)\)