from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4160, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,15,0,4]))
chi.galois_orbit()
[g,chi] = znchar(Mod(121,4160))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(4160\) | |
Conductor: | \(416\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(24\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 416.bz | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{24})\) |
Fixed field: | 24.24.188216044816745326913150945765287080795084676923392.1 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{4160}(121,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{13}{24}\right)\) |
\(\chi_{4160}(361,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{23}{24}\right)\) |
\(\chi_{4160}(1161,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{19}{24}\right)\) |
\(\chi_{4160}(1401,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{24}\right)\) |
\(\chi_{4160}(2201,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{24}\right)\) |
\(\chi_{4160}(2441,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{11}{24}\right)\) |
\(\chi_{4160}(3241,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{24}\right)\) |
\(\chi_{4160}(3481,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{17}{24}\right)\) |