from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4675, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([2,4,3]))
chi.galois_orbit()
[g,chi] = znchar(Mod(32,4675))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(4675\) | |
Conductor: | \(935\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(8\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 935.bc | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{8})\) |
Fixed field: | 8.8.93871382990515625.1 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{4675}(32,\cdot)\) | \(1\) | \(1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(1\) | \(i\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{4675}(43,\cdot)\) | \(1\) | \(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(1\) | \(-i\) | \(e\left(\frac{3}{8}\right)\) | \(i\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{4675}(1957,\cdot)\) | \(1\) | \(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(1\) | \(i\) | \(e\left(\frac{5}{8}\right)\) | \(-i\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{4675}(3068,\cdot)\) | \(1\) | \(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(1\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(i\) | \(e\left(\frac{1}{8}\right)\) |