Properties

Label 512.245
Modulus $512$
Conductor $512$
Order $128$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(512, base_ring=CyclotomicField(128))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,21]))
 
pari: [g,chi] = znchar(Mod(245,512))
 

Basic properties

Modulus: \(512\)
Conductor: \(512\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(128\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 512.o

\(\chi_{512}(5,\cdot)\) \(\chi_{512}(13,\cdot)\) \(\chi_{512}(21,\cdot)\) \(\chi_{512}(29,\cdot)\) \(\chi_{512}(37,\cdot)\) \(\chi_{512}(45,\cdot)\) \(\chi_{512}(53,\cdot)\) \(\chi_{512}(61,\cdot)\) \(\chi_{512}(69,\cdot)\) \(\chi_{512}(77,\cdot)\) \(\chi_{512}(85,\cdot)\) \(\chi_{512}(93,\cdot)\) \(\chi_{512}(101,\cdot)\) \(\chi_{512}(109,\cdot)\) \(\chi_{512}(117,\cdot)\) \(\chi_{512}(125,\cdot)\) \(\chi_{512}(133,\cdot)\) \(\chi_{512}(141,\cdot)\) \(\chi_{512}(149,\cdot)\) \(\chi_{512}(157,\cdot)\) \(\chi_{512}(165,\cdot)\) \(\chi_{512}(173,\cdot)\) \(\chi_{512}(181,\cdot)\) \(\chi_{512}(189,\cdot)\) \(\chi_{512}(197,\cdot)\) \(\chi_{512}(205,\cdot)\) \(\chi_{512}(213,\cdot)\) \(\chi_{512}(221,\cdot)\) \(\chi_{512}(229,\cdot)\) \(\chi_{512}(237,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{128})$
Fixed field: Number field defined by a degree 128 polynomial (not computed)

Values on generators

\((511,5)\) → \((1,e\left(\frac{21}{128}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 512 }(245, a) \) \(1\)\(1\)\(e\left(\frac{95}{128}\right)\)\(e\left(\frac{21}{128}\right)\)\(e\left(\frac{9}{64}\right)\)\(e\left(\frac{31}{64}\right)\)\(e\left(\frac{121}{128}\right)\)\(e\left(\frac{27}{128}\right)\)\(e\left(\frac{29}{32}\right)\)\(e\left(\frac{19}{32}\right)\)\(e\left(\frac{99}{128}\right)\)\(e\left(\frac{113}{128}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 512 }(245,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 512 }(245,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 512 }(245,·),\chi_{ 512 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 512 }(245,·)) \;\) at \(\; a,b = \) e.g. 1,2