sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(547, base_ring=CyclotomicField(546))
M = H._module
chi = DirichletCharacter(H, M([314]))
pari:[g,chi] = znchar(Mod(36,547))
Modulus: | 547 | |
Conductor: | 547 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 273 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ547(4,⋅)
χ547(6,⋅)
χ547(15,⋅)
χ547(16,⋅)
χ547(19,⋅)
χ547(25,⋅)
χ547(34,⋅)
χ547(36,⋅)
χ547(49,⋅)
χ547(51,⋅)
χ547(53,⋅)
χ547(56,⋅)
χ547(60,⋅)
χ547(62,⋅)
χ547(66,⋅)
χ547(67,⋅)
χ547(69,⋅)
χ547(73,⋅)
χ547(74,⋅)
χ547(76,⋅)
χ547(78,⋅)
χ547(82,⋅)
χ547(86,⋅)
χ547(97,⋅)
χ547(99,⋅)
χ547(110,⋅)
χ547(111,⋅)
χ547(113,⋅)
χ547(115,⋅)
χ547(116,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(273157)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ547(36,a) |
1 | 1 | e(273157) | e(75) | e(27341) | e(273257) | e(27379) | e(27364) | e(9166) | e(73) | e(9147) | e(3910) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)