Properties

Label 6336.101
Modulus $6336$
Conductor $6336$
Order $240$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6336, base_ring=CyclotomicField(240))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,135,40,24]))
 
pari: [g,chi] = znchar(Mod(101,6336))
 

Basic properties

Modulus: \(6336\)
Conductor: \(6336\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(240\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6336.fx

\(\chi_{6336}(29,\cdot)\) \(\chi_{6336}(101,\cdot)\) \(\chi_{6336}(149,\cdot)\) \(\chi_{6336}(173,\cdot)\) \(\chi_{6336}(293,\cdot)\) \(\chi_{6336}(365,\cdot)\) \(\chi_{6336}(437,\cdot)\) \(\chi_{6336}(677,\cdot)\) \(\chi_{6336}(821,\cdot)\) \(\chi_{6336}(893,\cdot)\) \(\chi_{6336}(941,\cdot)\) \(\chi_{6336}(965,\cdot)\) \(\chi_{6336}(1085,\cdot)\) \(\chi_{6336}(1157,\cdot)\) \(\chi_{6336}(1229,\cdot)\) \(\chi_{6336}(1469,\cdot)\) \(\chi_{6336}(1613,\cdot)\) \(\chi_{6336}(1685,\cdot)\) \(\chi_{6336}(1733,\cdot)\) \(\chi_{6336}(1757,\cdot)\) \(\chi_{6336}(1877,\cdot)\) \(\chi_{6336}(1949,\cdot)\) \(\chi_{6336}(2021,\cdot)\) \(\chi_{6336}(2261,\cdot)\) \(\chi_{6336}(2405,\cdot)\) \(\chi_{6336}(2477,\cdot)\) \(\chi_{6336}(2525,\cdot)\) \(\chi_{6336}(2549,\cdot)\) \(\chi_{6336}(2669,\cdot)\) \(\chi_{6336}(2741,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{240})$
Fixed field: Number field defined by a degree 240 polynomial (not computed)

Values on generators

\((4159,4357,3521,1729)\) → \((1,e\left(\frac{9}{16}\right),e\left(\frac{1}{6}\right),e\left(\frac{1}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 6336 }(101, a) \) \(1\)\(1\)\(e\left(\frac{191}{240}\right)\)\(e\left(\frac{119}{120}\right)\)\(e\left(\frac{209}{240}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{19}{80}\right)\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{71}{120}\right)\)\(e\left(\frac{13}{240}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{63}{80}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6336 }(101,a) \;\) at \(\;a = \) e.g. 2