Properties

Label 7448.ic
Modulus $7448$
Conductor $931$
Order $63$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7448, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,6,56]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(9,7448))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7448\)
Conductor: \(931\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(63\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 931.cb
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 63 polynomial

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(13\) \(15\) \(17\) \(23\) \(25\) \(27\)
\(\chi_{7448}(9,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{10}{21}\right)\)
\(\chi_{7448}(81,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{20}{21}\right)\)
\(\chi_{7448}(289,\cdot)\) \(1\) \(1\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{19}{21}\right)\)
\(\chi_{7448}(473,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{20}{21}\right)\)
\(\chi_{7448}(529,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{2}{21}\right)\)
\(\chi_{7448}(1073,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{19}{21}\right)\)
\(\chi_{7448}(1241,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{16}{21}\right)\)
\(\chi_{7448}(1593,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{17}{21}\right)\)
\(\chi_{7448}(2209,\cdot)\) \(1\) \(1\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{8}{21}\right)\)
\(\chi_{7448}(2305,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{4}{21}\right)\)
\(\chi_{7448}(2417,\cdot)\) \(1\) \(1\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{16}{21}\right)\)
\(\chi_{7448}(2601,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{8}{21}\right)\)
\(\chi_{7448}(2657,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{11}{21}\right)\)
\(\chi_{7448}(3201,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{16}{21}\right)\)
\(\chi_{7448}(3273,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{2}{21}\right)\)
\(\chi_{7448}(3369,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{13}{21}\right)\)
\(\chi_{7448}(3481,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{4}{21}\right)\)
\(\chi_{7448}(3665,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{2}{21}\right)\)
\(\chi_{7448}(3721,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{5}{21}\right)\)
\(\chi_{7448}(4265,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{4}{21}\right)\)
\(\chi_{7448}(4337,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{17}{21}\right)\)
\(\chi_{7448}(4433,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{1}{21}\right)\)
\(\chi_{7448}(4545,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{13}{21}\right)\)
\(\chi_{7448}(4729,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{17}{21}\right)\)
\(\chi_{7448}(4785,\cdot)\) \(1\) \(1\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{20}{21}\right)\)
\(\chi_{7448}(5329,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{13}{21}\right)\)
\(\chi_{7448}(5401,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{11}{21}\right)\)
\(\chi_{7448}(5497,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{10}{21}\right)\)
\(\chi_{7448}(5609,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{1}{21}\right)\)
\(\chi_{7448}(5793,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{11}{21}\right)\)
\(\chi_{7448}(6393,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{1}{21}\right)\)