from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7448, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([0,0,6,56]))
chi.galois_orbit()
[g,chi] = znchar(Mod(9,7448))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(7448\) | |
Conductor: | \(931\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(63\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 931.cb | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{63})$ |
Fixed field: | Number field defined by a degree 63 polynomial |
First 31 of 36 characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{7448}(9,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{31}{63}\right)\) | \(e\left(\frac{41}{63}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{50}{63}\right)\) | \(e\left(\frac{20}{63}\right)\) | \(e\left(\frac{40}{63}\right)\) | \(e\left(\frac{44}{63}\right)\) | \(e\left(\frac{62}{63}\right)\) | \(e\left(\frac{10}{21}\right)\) |
\(\chi_{7448}(81,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{63}\right)\) | \(e\left(\frac{62}{63}\right)\) | \(e\left(\frac{19}{63}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{37}{63}\right)\) | \(e\left(\frac{40}{63}\right)\) | \(e\left(\frac{17}{63}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{61}{63}\right)\) | \(e\left(\frac{20}{21}\right)\) |
\(\chi_{7448}(289,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{40}{63}\right)\) | \(e\left(\frac{19}{63}\right)\) | \(e\left(\frac{17}{63}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{59}{63}\right)\) | \(e\left(\frac{55}{63}\right)\) | \(e\left(\frac{29}{63}\right)\) | \(e\left(\frac{38}{63}\right)\) | \(e\left(\frac{19}{21}\right)\) |
\(\chi_{7448}(473,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{20}{63}\right)\) | \(e\left(\frac{41}{63}\right)\) | \(e\left(\frac{40}{63}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{58}{63}\right)\) | \(e\left(\frac{61}{63}\right)\) | \(e\left(\frac{59}{63}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{19}{63}\right)\) | \(e\left(\frac{20}{21}\right)\) |
\(\chi_{7448}(529,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{44}{63}\right)\) | \(e\left(\frac{2}{63}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{29}{63}\right)\) | \(e\left(\frac{13}{63}\right)\) | \(e\left(\frac{4}{63}\right)\) | \(e\left(\frac{2}{21}\right)\) |
\(\chi_{7448}(1073,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{61}{63}\right)\) | \(e\left(\frac{40}{63}\right)\) | \(e\left(\frac{59}{63}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{32}{63}\right)\) | \(e\left(\frac{38}{63}\right)\) | \(e\left(\frac{13}{63}\right)\) | \(e\left(\frac{8}{63}\right)\) | \(e\left(\frac{17}{63}\right)\) | \(e\left(\frac{19}{21}\right)\) |
\(\chi_{7448}(1241,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{63}\right)\) | \(e\left(\frac{16}{63}\right)\) | \(e\left(\frac{11}{63}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{38}{63}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{43}{63}\right)\) | \(e\left(\frac{41}{63}\right)\) | \(e\left(\frac{32}{63}\right)\) | \(e\left(\frac{16}{21}\right)\) |
\(\chi_{7448}(1593,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{63}\right)\) | \(e\left(\frac{38}{63}\right)\) | \(e\left(\frac{34}{63}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{43}{63}\right)\) | \(e\left(\frac{55}{63}\right)\) | \(e\left(\frac{47}{63}\right)\) | \(e\left(\frac{58}{63}\right)\) | \(e\left(\frac{13}{63}\right)\) | \(e\left(\frac{17}{21}\right)\) |
\(\chi_{7448}(2209,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{50}{63}\right)\) | \(e\left(\frac{8}{63}\right)\) | \(e\left(\frac{37}{63}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{19}{63}\right)\) | \(e\left(\frac{58}{63}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{16}{63}\right)\) | \(e\left(\frac{8}{21}\right)\) |
\(\chi_{7448}(2305,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{29}{63}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{20}{63}\right)\) | \(e\left(\frac{8}{63}\right)\) | \(e\left(\frac{16}{63}\right)\) | \(e\left(\frac{5}{63}\right)\) | \(e\left(\frac{50}{63}\right)\) | \(e\left(\frac{4}{21}\right)\) |
\(\chi_{7448}(2417,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{58}{63}\right)\) | \(e\left(\frac{37}{63}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{17}{63}\right)\) | \(e\left(\frac{32}{63}\right)\) | \(e\left(\frac{1}{63}\right)\) | \(e\left(\frac{20}{63}\right)\) | \(e\left(\frac{11}{63}\right)\) | \(e\left(\frac{16}{21}\right)\) |
\(\chi_{7448}(2601,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{63}\right)\) | \(e\left(\frac{50}{63}\right)\) | \(e\left(\frac{58}{63}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{40}{63}\right)\) | \(e\left(\frac{16}{63}\right)\) | \(e\left(\frac{32}{63}\right)\) | \(e\left(\frac{10}{63}\right)\) | \(e\left(\frac{37}{63}\right)\) | \(e\left(\frac{8}{21}\right)\) |
\(\chi_{7448}(2657,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{11}{63}\right)\) | \(e\left(\frac{43}{63}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{34}{63}\right)\) | \(e\left(\frac{1}{63}\right)\) | \(e\left(\frac{2}{63}\right)\) | \(e\left(\frac{40}{63}\right)\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{11}{21}\right)\) |
\(\chi_{7448}(3201,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{16}{63}\right)\) | \(e\left(\frac{58}{63}\right)\) | \(e\left(\frac{32}{63}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{59}{63}\right)\) | \(e\left(\frac{11}{63}\right)\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{62}{63}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{16}{21}\right)\) |
\(\chi_{7448}(3273,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{63}\right)\) | \(e\left(\frac{44}{63}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{10}{63}\right)\) | \(e\left(\frac{4}{63}\right)\) | \(e\left(\frac{8}{63}\right)\) | \(e\left(\frac{34}{63}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{2}{21}\right)\) |
\(\chi_{7448}(3369,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{55}{63}\right)\) | \(e\left(\frac{34}{63}\right)\) | \(e\left(\frac{47}{63}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{2}{63}\right)\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{32}{63}\right)\) | \(e\left(\frac{5}{63}\right)\) | \(e\left(\frac{13}{21}\right)\) |
\(\chi_{7448}(3481,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{4}{63}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{8}{63}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{62}{63}\right)\) | \(e\left(\frac{50}{63}\right)\) | \(e\left(\frac{37}{63}\right)\) | \(e\left(\frac{47}{63}\right)\) | \(e\left(\frac{29}{63}\right)\) | \(e\left(\frac{4}{21}\right)\) |
\(\chi_{7448}(3665,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{2}{63}\right)\) | \(e\left(\frac{23}{63}\right)\) | \(e\left(\frac{4}{63}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{31}{63}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{50}{63}\right)\) | \(e\left(\frac{55}{63}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{2}{21}\right)\) |
\(\chi_{7448}(3721,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{47}{63}\right)\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{10}{63}\right)\) | \(e\left(\frac{20}{63}\right)\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{31}{63}\right)\) | \(e\left(\frac{5}{21}\right)\) |
\(\chi_{7448}(4265,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{4}{63}\right)\) | \(e\left(\frac{50}{63}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{41}{63}\right)\) | \(e\left(\frac{29}{63}\right)\) | \(e\left(\frac{58}{63}\right)\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{8}{63}\right)\) | \(e\left(\frac{4}{21}\right)\) |
\(\chi_{7448}(4337,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{59}{63}\right)\) | \(e\left(\frac{17}{63}\right)\) | \(e\left(\frac{55}{63}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{1}{63}\right)\) | \(e\left(\frac{13}{63}\right)\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{16}{63}\right)\) | \(e\left(\frac{34}{63}\right)\) | \(e\left(\frac{17}{21}\right)\) |
\(\chi_{7448}(4433,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{63}\right)\) | \(e\left(\frac{43}{63}\right)\) | \(e\left(\frac{2}{63}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{47}{63}\right)\) | \(e\left(\frac{44}{63}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{59}{63}\right)\) | \(e\left(\frac{23}{63}\right)\) | \(e\left(\frac{1}{21}\right)\) |
\(\chi_{7448}(4545,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{63}\right)\) | \(e\left(\frac{55}{63}\right)\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{44}{63}\right)\) | \(e\left(\frac{5}{63}\right)\) | \(e\left(\frac{10}{63}\right)\) | \(e\left(\frac{11}{63}\right)\) | \(e\left(\frac{47}{63}\right)\) | \(e\left(\frac{13}{21}\right)\) |
\(\chi_{7448}(4729,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{38}{63}\right)\) | \(e\left(\frac{59}{63}\right)\) | \(e\left(\frac{13}{63}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{34}{63}\right)\) | \(e\left(\frac{5}{63}\right)\) | \(e\left(\frac{37}{63}\right)\) | \(e\left(\frac{55}{63}\right)\) | \(e\left(\frac{17}{21}\right)\) |
\(\chi_{7448}(4785,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{62}{63}\right)\) | \(e\left(\frac{20}{63}\right)\) | \(e\left(\frac{61}{63}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{16}{63}\right)\) | \(e\left(\frac{19}{63}\right)\) | \(e\left(\frac{38}{63}\right)\) | \(e\left(\frac{4}{63}\right)\) | \(e\left(\frac{40}{63}\right)\) | \(e\left(\frac{20}{21}\right)\) |
\(\chi_{7448}(5329,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{34}{63}\right)\) | \(e\left(\frac{13}{63}\right)\) | \(e\left(\frac{5}{63}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{23}{63}\right)\) | \(e\left(\frac{47}{63}\right)\) | \(e\left(\frac{31}{63}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{13}{21}\right)\) |
\(\chi_{7448}(5401,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{32}{63}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{1}{63}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{55}{63}\right)\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{44}{63}\right)\) | \(e\left(\frac{61}{63}\right)\) | \(e\left(\frac{43}{63}\right)\) | \(e\left(\frac{11}{21}\right)\) |
\(\chi_{7448}(5497,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{10}{63}\right)\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{20}{63}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{29}{63}\right)\) | \(e\left(\frac{62}{63}\right)\) | \(e\left(\frac{61}{63}\right)\) | \(e\left(\frac{23}{63}\right)\) | \(e\left(\frac{41}{63}\right)\) | \(e\left(\frac{10}{21}\right)\) |
\(\chi_{7448}(5609,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{1}{63}\right)\) | \(e\left(\frac{44}{63}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{23}{63}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{38}{63}\right)\) | \(e\left(\frac{2}{63}\right)\) | \(e\left(\frac{1}{21}\right)\) |
\(\chi_{7448}(5793,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{63}\right)\) | \(e\left(\frac{32}{63}\right)\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{13}{63}\right)\) | \(e\left(\frac{43}{63}\right)\) | \(e\left(\frac{23}{63}\right)\) | \(e\left(\frac{19}{63}\right)\) | \(e\left(\frac{1}{63}\right)\) | \(e\left(\frac{11}{21}\right)\) |
\(\chi_{7448}(6393,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{63}\right)\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{23}{63}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{5}{63}\right)\) | \(e\left(\frac{2}{63}\right)\) | \(e\left(\frac{4}{63}\right)\) | \(e\left(\frac{17}{63}\right)\) | \(e\left(\frac{44}{63}\right)\) | \(e\left(\frac{1}{21}\right)\) |