Properties

Label 2.2.12.1-3042.1-e4
Base field \(\Q(\sqrt{3}) \)
Conductor norm \( 3042 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 1]))
 
gp: K = nfinit(Polrev([-3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}+\left(-270a-543\right){x}-3606a-6377\)
sage: E = EllipticCurve([K([0,1]),K([0,0]),K([0,0]),K([-543,-270]),K([-6377,-3606])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,0]),Polrev([0,0]),Polrev([-543,-270]),Polrev([-6377,-3606])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,0],K![0,0],K![-543,-270],K![-6377,-3606]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-8 a - \frac{19}{4} : \frac{19}{8} a + 12 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((39a+39)\) = \((a+1)\cdot(a)^{2}\cdot(a+4)\cdot(a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 3042 \) = \(2\cdot3^{2}\cdot13\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-1404a-32994$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-1404a-32994)\) = \((a+1)^{2}\cdot(a)^{6}\cdot(a+4)^{4}\cdot(a-4)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 1082690388 \) = \(2^{2}\cdot3^{6}\cdot13^{4}\cdot13\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{38494918115784729}{57122} a + \frac{33337577066388840}{28561} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 1.4337968893678333695857269080858620954 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 8 \)  =  \(2\cdot2\cdot2\cdot1\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 3.3112120801590666686988426655417238167 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 4 \) (rounded)

BSD formula

$\displaystyle 3.311212080 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 4 \cdot 1.433797 \cdot 1 \cdot 8 } { {2^2 \cdot 3.464102} } \approx 3.311212080$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a+1)\) \(2\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((a)\) \(3\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((a+4)\) \(13\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((a-4)\) \(13\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 3042.1-e consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.